编写更快的Python物理模拟器

16 投票
4 回答
13884 浏览
提问于 2025-04-17 18:53

我最近在用Python写自己的物理引擎,算是一种物理和编程的练习。一开始我跟着这个教程学,进展还不错,但后来我发现了thomas jakobsen写的“高级角色物理”这篇文章,里面讲了用Verlet积分法来做模拟,我觉得特别有意思。

我尝试用Verlet积分法写一个简单的物理模拟器,但发现这比我想象的要难一些。我在网上找了一些示例程序来阅读,偶然发现了这个用Python写的例子,还有这个使用Processing的教程

让我印象深刻的是Processing版本的运行速度。光是布料模拟就有2400个不同的点在运算,这还不包括其他物体。

而Python的例子只用了256个粒子来模拟布料,运行速度大约是每秒30帧。我试着把粒子数量增加到2401(因为这个程序需要是平方的),结果运行速度降到了每秒大约3帧。


这两个程序的工作原理大致相同,都是把粒子对象存储在一个列表中,然后遍历这个列表,调用每个粒子的“更新位置”方法。举个例子,这是Processing代码中计算每个粒子新位置的部分:

for (int i = 0; i < pointmasses.size(); i++) {
    PointMass pointmass = (PointMass) pointmasses.get(i);
    pointmass.updateInteractions();
    pointmass.updatePhysics(fixedDeltaTimeSeconds);
}

编辑:这是我之前提到的Python版本的代码:

"""
verletCloth01.py
Eric Pavey - 2010-07-03 - www.akeric.com

Riding on the shoulders of giants.
I wanted to learn now to do 'verlet cloth' in Python\Pygame.  I first ran across
this post \ source:
http://forums.overclockers.com.au/showthread.php?t=870396
http://dl.dropbox.com/u/3240460/cloth5.py

Which pointed to some good reference, that was a dead link.  After some searching,
I found it here:
http://www.gpgstudy.com/gpgiki/GDC%202001%3A%20Advanced%20Character%20Physics
Which is a 2001 SIGGRAPH paper by Thomas Jakobsen called:
"GDC 2001: Advanced Characer Physics".

This code is a Python\Pygame interpretation of that 2001 Siggraph paper.  I did
borrow some code from 'domlebo's source code, it was a great starting point.  But
I'd like to think I put my own flavor on it.
"""

#--------------
# Imports & Initis
import sys
from math import sqrt

# Vec2D comes from here: http://pygame.org/wiki/2DVectorClass
from vec2d import Vec2d
import pygame
from pygame.locals import *
pygame.init()

#--------------
# Constants
TITLE = "verletCloth01"
WIDTH = 600
HEIGHT = 600
FRAMERATE = 60
# How many iterations to run on our constraints per frame?
# This will 'tighten' the cloth, but slow the sim.
ITERATE = 2
GRAVITY = Vec2d(0.0,0.05)
TSTEP = 2.8

# How many pixels to position between each particle?
PSTEP = int(WIDTH*.03)
# Offset in pixels from the top left of screen to position grid:
OFFSET = int(.25*WIDTH)

#-------------
# Define helper functions, classes

class Particle(object):
    """
    Stores position, previous position, and where it is in the grid.
    """
    def __init__(self, screen, currentPos, gridIndex):
        # Current Position : m_x
        self.currentPos = Vec2d(currentPos)
        # Index [x][y] of Where it lives in the grid
        self.gridIndex = gridIndex
        # Previous Position : m_oldx
        self.oldPos = Vec2d(currentPos)
        # Force accumulators : m_a
        self.forces = GRAVITY
        # Should the particle be locked at its current position?
        self.locked = False
        self.followMouse = False

        self.colorUnlocked = Color('white')
        self.colorLocked = Color('green')
        self.screen = screen

    def __str__(self):
        return "Particle <%s, %s>"%(self.gridIndex[0], self.gridIndex[1])

    def draw(self):
        # Draw a circle at the given Particle.
        screenPos = (self.currentPos[0], self.currentPos[1])
        if self.locked:
            pygame.draw.circle(self.screen, self.colorLocked, (int(screenPos[0]),
                                                         int(screenPos[1])), 4, 0)
        else:
            pygame.draw.circle(self.screen, self.colorUnlocked, (int(screenPos[0]),
                                                         int(screenPos[1])), 1, 0)

class Constraint(object):
    """
    Stores 'constraint' data between two Particle objects.  Stores this data
    before the sim runs, to speed sim and draw operations.
    """
    def __init__(self, screen, particles):
        self.particles = sorted(particles)
        # Calculate restlength as the initial distance between the two particles:
        self.restLength = sqrt(abs(pow(self.particles[1].currentPos.x -
                                       self.particles[0].currentPos.x, 2) +
                                   pow(self.particles[1].currentPos.y -
                                       self.particles[0].currentPos.y, 2)))
        self.screen = screen
        self.color = Color('red')

    def __str__(self):
        return "Constraint <%s, %s>"%(self.particles[0], self.particles[1])

    def draw(self):
        # Draw line between the two particles.
        p1 = self.particles[0]
        p2 = self.particles[1]
        p1pos = (p1.currentPos[0],
                 p1.currentPos[1])
        p2pos = (p2.currentPos[0],
                 p2.currentPos[1])
        pygame.draw.aaline(self.screen, self.color,
                           (p1pos[0], p1pos[1]), (p2pos[0], p2pos[1]), 1)

class Grid(object):
    """
    Stores a grid of Particle objects.  Emulates a 2d container object.  Particle
    objects can be indexed by position:
        grid = Grid()
        particle = g[2][4]
    """
    def __init__(self, screen, rows, columns, step, offset):

        self.screen = screen
        self.rows = rows
        self.columns = columns
        self.step = step
        self.offset = offset

        # Make our internal grid:
        # _grid is a list of sublists.
        #    Each sublist is a 'column'.
        #        Each column holds a particle object per row:
        # _grid =
        # [[p00, [p10, [etc,
        #   p01,  p11,
        #   etc], etc],     ]]
        self._grid = []
        for x in range(columns):
            self._grid.append([])
            for y in range(rows):
                currentPos = (x*self.step+self.offset, y*self.step+self.offset)
                self._grid[x].append(Particle(self.screen, currentPos, (x,y)))

    def getNeighbors(self, gridIndex):
        """
        return a list of all neighbor particles to the particle at the given gridIndex:

        gridIndex = [x,x] : The particle index we're polling
        """
        possNeighbors = []
        possNeighbors.append([gridIndex[0]-1, gridIndex[1]])
        possNeighbors.append([gridIndex[0], gridIndex[1]-1])
        possNeighbors.append([gridIndex[0]+1, gridIndex[1]])
        possNeighbors.append([gridIndex[0], gridIndex[1]+1])

        neigh = []
        for coord in possNeighbors:
            if (coord[0] < 0) | (coord[0] > self.rows-1):
                pass
            elif (coord[1] < 0) | (coord[1] > self.columns-1):
                pass
            else:
                neigh.append(coord)

        finalNeighbors = []
        for point in neigh:
            finalNeighbors.append((point[0], point[1]))

        return finalNeighbors

    #--------------------------
    # Implement Container Type:

    def __len__(self):
        return len(self.rows * self.columns)

    def __getitem__(self, key):
        return self._grid[key]

    def __setitem__(self, key, value):
        self._grid[key] = value

    #def __delitem__(self, key):
        #del(self._grid[key])

    def __iter__(self):
        for x in self._grid:
            for y in x:
                yield y

    def __contains__(self, item):
        for x in self._grid:
            for y in x:
                if y is item:
                    return True
        return False


class ParticleSystem(Grid):
    """
    Implements the verlet particles physics on the encapsulated Grid object.
    """

    def __init__(self, screen, rows=49, columns=49, step=PSTEP, offset=OFFSET):
        super(ParticleSystem, self).__init__(screen, rows, columns, step, offset)

        # Generate our list of Constraint objects.  One is generated between
        # every particle connection.
        self.constraints = []
        for p in self:
            neighborIndices = self.getNeighbors(p.gridIndex)
            for ni in neighborIndices:
                # Get the neighbor Particle from the index:
                n = self[ni[0]][ni[1]]
                # Let's not add duplicate Constraints, which would be easy to do!
                new = True
                for con in self.constraints:
                    if n in con.particles and p in con.particles:
                        new = False
                if new:
                    self.constraints.append( Constraint(self.screen, (p,n)) )

        # Lock our top left and right particles by default:
        self[0][0].locked = True
        self[1][0].locked = True
        self[-2][0].locked = True
        self[-1][0].locked = True

    def verlet(self):
        # Verlet integration step:
        for p in self:
            if not p.locked:
                # make a copy of our current position
                temp = Vec2d(p.currentPos)
                p.currentPos += p.currentPos - p.oldPos + p.forces * TSTEP**2
                p.oldPos = temp
            elif p.followMouse:
                temp = Vec2d(p.currentPos)
                p.currentPos = Vec2d(pygame.mouse.get_pos())
                p.oldPos = temp

    def satisfyConstraints(self):
        # Keep particles together:
        for c in self.constraints:
            delta =  c.particles[0].currentPos - c.particles[1].currentPos
            deltaLength = sqrt(delta.dot(delta))
            try:
                # You can get a ZeroDivisionError here once, so let's catch it.
                # I think it's when particles sit on top of one another due to
                # being locked.
                diff = (deltaLength-c.restLength)/deltaLength
                if not c.particles[0].locked:
                    c.particles[0].currentPos -= delta*0.5*diff
                if not c.particles[1].locked:
                    c.particles[1].currentPos += delta*0.5*diff
            except ZeroDivisionError:
                pass

    def accumulateForces(self):
        # This doesn't do much right now, other than constantly reset the
        # particles 'forces' to be 'gravity'.  But this is where you'd implement
        # other things, like drag, wind, etc.
        for p in self:
            p.forces = GRAVITY

    def timeStep(self):
        # This executes the whole shebang:
        self.accumulateForces()
        self.verlet()
        for i in range(ITERATE):
            self.satisfyConstraints()

    def draw(self):
        """
        Draw constraint connections, and particle positions:
        """
        for c in self.constraints:
            c.draw()
        #for p in self:
        #    p.draw()

    def lockParticle(self):
        """
        If the mouse LMB is pressed for the first time on a particle, the particle
        will assume the mouse motion.  When it is pressed again, it will lock
        the particle in space.
        """
        mousePos = Vec2d(pygame.mouse.get_pos())
        for p in self:
            dist2mouse = sqrt(abs(pow(p.currentPos.x -
                                      mousePos.x, 2) +
                                  pow(p.currentPos.y -
                                      mousePos.y, 2)))
            if dist2mouse < 10:
                if not p.followMouse:
                    p.locked = True
                    p.followMouse = True
                    p.oldPos = Vec2d(p.currentPos)
                else:
                    p.followMouse = False

    def unlockParticle(self):
        """
        If the RMB is pressed on a particle, if the particle is currently
        locked or being moved by the mouse, it will be 'unlocked'/stop following
        the mouse.
        """
        mousePos = Vec2d(pygame.mouse.get_pos())
        for p in self:
            dist2mouse = sqrt(abs(pow(p.currentPos.x -
                                      mousePos.x, 2) +
                                  pow(p.currentPos.y -
                                      mousePos.y, 2)))
            if dist2mouse < 5:
                p.locked = False

#------------
# Main Program
def main():
    # Screen Setup
    screen = pygame.display.set_mode((WIDTH, HEIGHT))
    clock = pygame.time.Clock()

    # Create our grid of particles:
    particleSystem = ParticleSystem(screen)
    backgroundCol = Color('black')

    # main loop
    looping = True
    while looping:
        clock.tick(FRAMERATE)
        pygame.display.set_caption("%s -- www.AKEric.com -- LMB: move\lock - RMB: unlock - fps: %.2f"%(TITLE, clock.get_fps()) )
        screen.fill(backgroundCol)

        # Detect for events
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                looping = False
            elif event.type == MOUSEBUTTONDOWN:
                if event.button == 1:
                    # See if we can make a particle follow the mouse and lock
                    # its position when done.
                    particleSystem.lockParticle()
                if event.button == 3:
                    # Try to unlock the current particles position:
                    particleSystem.unlockParticle()

        # Do stuff!
        particleSystem.timeStep()
        particleSystem.draw()

        # update our display:
        pygame.display.update()

#------------
# Execution from shell\icon:
if __name__ == "__main__":
    print "Running Python version:", sys.version
    print "Running PyGame version:", pygame.ver
    print "Running %s.py"%TITLE
    sys.exit(main())

因为这两个程序的工作方式差不多,但Python版本的速度慢得多,这让我开始思考:

  • 这种性能差异是Python的特性吗?
  • 如果我想让自己的Python程序性能更好,应该做些什么不同的事情?比如把所有粒子的属性存储在一个数组里,而不是使用单独的对象等等。

编辑:已回答!!

@Mr E在评论中链接的PyCon演讲,以及@A. Rosa的回答和相关资源,都极大地帮助我更好地理解如何写出优秀且快速的Python代码。我现在把这个页面收藏起来,以备将来参考 :D

4 个回答

5

我还建议你了解其他的物理引擎。有一些开源的引擎使用了不同的方法来计算“物理效果”。

  • Newton Game Dynamics
  • Chipmunk
  • Bullet
  • Box2D
  • ODE(开放动力学引擎)

大多数引擎也有对应的移植版本:

  • Pymunk
  • PyBullet
  • PyBox2D
  • PyODE

如果你仔细阅读这些引擎的文档,通常会看到它们的说明说是为了速度进行了优化(30帧每秒到60帧每秒)。但是如果你认为它们可以在计算“真实”物理的同时达到这个速度,那你就错了。大多数引擎计算物理效果的精度足够高,以至于普通用户无法在视觉上区分“真实”的物理行为和“模拟”的物理行为。不过,如果你仔细研究误差,你会发现这些误差在写游戏时是可以忽略不计的。但如果你想进行真正的物理模拟,这些引擎就没什么用处了。

所以我想说,如果你在做真实的物理模拟,按照设计来说,你的速度会比这些引擎慢,而且你永远也追不上其他的物理引擎。

5

如果你用写Java的方式来写Python,当然会慢了,因为Java的写法不太适合Python。

这种性能差异是Python的特性吗?如果我想让自己的Python程序运行得更快,我应该怎么做呢?比如,把所有粒子的属性放在一个数组里,而不是用单独的对象等等。

不看到你的代码,很难说。

这里有一些Python和Java之间的不同之处,这些差异有时会影响性能:

  1. 处理使用的是即时模式画布,如果你想在Python中获得类似的性能,你也需要使用即时模式画布。大多数图形用户界面框架(包括Tkinter画布)使用的是保留模式,这种模式更容易使用,但本质上比即时模式慢。你需要使用像pygame、SDL或Pyglet提供的即时模式画布。

  2. Python是动态语言,这意味着实例成员访问、模块成员访问和全局变量访问是在运行时解决的。在Python中,实例成员、模块成员和全局变量的访问实际上是字典访问。而在Java中,这些是在编译时解决的,因此速度更快。可以将经常访问的全局变量、模块变量和属性缓存到局部变量中。

  3. 在Python 2.x中,range()会生成一个具体的列表,而在Python中,使用迭代器进行迭代,比如for item in list,通常比使用迭代变量的方式更快,比如for n in range(len(list))。你几乎总是应该直接使用迭代器进行迭代,而不是使用range(len(...))。

  4. Python的数字是不可变的,这意味着任何算术计算都会分配一个新对象。这是普通Python不太适合低级计算的原因之一;大多数希望能够进行低级计算而不需要写C扩展的人,通常会使用cython、psyco或numpy。不过,通常只有在你有数百万次计算时,这个问题才会显现出来。

这些只是部分、不完整的列表,还有很多其他原因导致将Java代码翻译成Python时效果不佳。如果不看到你的代码,就无法判断你需要做什么不同的事情。优化后的Python代码通常与优化后的Java代码看起来非常不同。

8

在Python Wiki的性能提示部分,有一篇Guido van Rossum的文章。文章的结尾提到了一句话:

如果你觉得需要速度,那就使用内置函数——没有什么能比用C语言写的循环更快。

这篇文章还列出了一些优化循环的建议。我推荐这两个资源,因为它们提供了关于如何优化Python代码的具体和实用的建议。

还有一个著名的基准测试网站benchmarksgame.alioth.debian.org,你可以在这里找到不同程序和语言在不同机器上的比较。可以看出,有很多变量在影响结果,所以很难简单地说“Java比Python快”。这通常用一句话总结:“语言没有速度;实现才有速度”

在你的代码中,可以使用更Pythonic和更快的内置函数替代一些写法。例如,有几个嵌套循环(其中一些不需要处理整个列表),可以用imap列表推导式来重写。PyPy也是一个提高性能的有趣选择。我不是Python优化方面的专家,但有很多非常有用的技巧(注意,不要在Python中写Java就是其中之一!)。

相关资源和其他问题:

撰写回答