Python中的调和级数
有没有人知道怎么用Python编写调和级数的代码?
H(n) = 1 + 1/2 + 1/3 + ... + 1/n
注意:我们不能从预定义的模块中导入。输出必须是答案的分子和分母,以分数形式表示(最简分数)。
这是我写的调和级数的代码。
n = input("Enter n:")
def harmonic(n):
a=1
b=1
for d in range(2, n+1):
a = a*d+b
b = b*d
return (a,b)
x == max(a,b)%min(a, b)
if x == 0:
y=min(a,b)
return y
else:
y=min(a,b)/x
return y
a=a/y
b=b/y
return (a,b)
print harmonic(n)
有什么问题吗?无论我输入什么,输出总是(3,2)。
5 个回答
1
正如其他人提到的,当 d = 2 也就是 (1 + 1/2) 的时候,你应该在 for 循环外面返回结果,而不是在循环里面。
这是我写的一个代码,功能是一样的:
#!Python2.7
def gcd(a, b):
if b: return gcd(b, a%b)
return a
def lcm(a, b):
return a*b/gcd(a, b)
def start():
n = int(raw_input())
ans = reduce(lambda x, y: (x[0]*lcm(x[1],y[1])/x[1]+y[0]*lcm(x[1],y[1])/y[1], lcm(x[1],y[1])),[(1,x) for x in xrange(1,n+1)])
_gcd = gcd(ans[0], ans[1])
print (ans[0]/_gcd, ans[1]/_gcd)
start()
如果你想避免使用 reduce
、lamda
和列表推导式:
#!Python2.7
def gcd(a, b):
if b: return gcd(b, a%b)
return a
def lcm(a, b):
assert a != 0
assert b != 0
return a*b/gcd(a, b)
def next(x, y):
lcmxy = lcm(x[1], y[1])
return (x[0]*lcmxy/x[1]+y[0]*lcmxy/y[1], lcmxy)
def start():
n = int(raw_input())
curr = (1,1)
for x in xrange(2,n+1):
curr = next(curr, (1,x))
_gcd = gcd(curr[0], curr[1])
print (curr[0]/_gcd, curr[1]/_gcd)
start()
1
你可以通过找到1到n之间数字的最小公倍数来确定分母。
分子则是所有值 denominator/x
的总和,其中x是从1到n之间的所有数字。
下面是一些代码:
def gcd(a, b):
"""Return greatest common divisor using Euclid's Algorithm."""
while b:
a, b = b, a % b
return a
def lcm(a, b):
"""Return lowest common multiple."""
return a * b // gcd(a, b)
def lcmm(args):
"""Return lcm of args."""
return reduce(lcm, args)
def harmonic(n):
lowest_common_multiple = lcmm(range(1,n))
nominator = sum([lowest_common_multiple/i for i in range(1,n)])
greatest_common_denominator = gcd(lowest_common_multiple, nominator)
return nominator/greatest_common_denominator, lowest_common_multiple/greatest_common_denominator
print harmonic(7)
print harmonic(10)
print harmonic(20)
2
我需要检查你的尝试两次 - 并在你原始代码的中间插入了一个简单的最大公约数(gcd)计算
n = input("Enter n:")
def harmonic(n): #original harmonic series
a=1
b=1
for d in range(2, n+1):
a = a*d+b
b = b*d
return(a,b)
def harmonic_lt(n): #_lt: harmonic series with lowest terms
#not pythonic, but simple
a=1
b=1
for d in range(2, n+1):
a = a*d+b
b = b*d
y=a
x=b
while x > 0:
re = y % x
y = x
x = re
a=a/y
b=b/y
return(a,b)
print harmonic(n)
print harmonic_lt(n)