如何用不动点进行多项式拟合

2024-05-19 22:25:46 发布

您现在位置:Python中文网/ 问答频道 /正文

我一直在使用numpy(使用最小二乘法)在python中进行一些拟合。

我想知道是否有一种方法可以让它适应数据,同时强迫它通过一些固定点?如果没有,那么python中是否还有其他库(或者我可以链接到-eg c的其他语言)?

注意我知道可以通过将一个固定点移动到原点并将常数项强制为零来强制通过一个固定点,如这里所述,但我更想知道的是,对于两个或更多的固定点:

http://www.physicsforums.com/showthread.php?t=523360


Tags: 数据方法numpycom语言http链接www
3条回答

用不动点拟合的数学正确方法是使用Lagrange multipliers。基本上,你可以修改你想要最小化的目标函数,通常是残差平方和,为每个不动点增加一个额外的参数。我还没有成功地将一个修改过的目标函数输入到scipy的一个最小化函数中。但对于多项式拟合,可以用笔和纸计算出细节,并将问题转换为线性方程组的解:

def polyfit_with_fixed_points(n, x, y, xf, yf) :
    mat = np.empty((n + 1 + len(xf),) * 2)
    vec = np.empty((n + 1 + len(xf),))
    x_n = x**np.arange(2 * n + 1)[:, None]
    yx_n = np.sum(x_n[:n + 1] * y, axis=1)
    x_n = np.sum(x_n, axis=1)
    idx = np.arange(n + 1) + np.arange(n + 1)[:, None]
    mat[:n + 1, :n + 1] = np.take(x_n, idx)
    xf_n = xf**np.arange(n + 1)[:, None]
    mat[:n + 1, n + 1:] = xf_n / 2
    mat[n + 1:, :n + 1] = xf_n.T
    mat[n + 1:, n + 1:] = 0
    vec[:n + 1] = yx_n
    vec[n + 1:] = yf
    params = np.linalg.solve(mat, vec)
    return params[:n + 1]

要测试它是否有效,请尝试以下操作,其中n是点数,d是多项式的次数,f是不动点的数目:

n, d, f = 50, 8, 3
x = np.random.rand(n)
xf = np.random.rand(f)
poly = np.polynomial.Polynomial(np.random.rand(d + 1))
y = poly(x) + np.random.rand(n) - 0.5
yf = np.random.uniform(np.min(y), np.max(y), size=(f,))
params = polyfit_with_fixed_points(d, x , y, xf, yf)
poly = np.polynomial.Polynomial(params)
xx = np.linspace(0, 1, 1000)
plt.plot(x, y, 'bo')
plt.plot(xf, yf, 'ro')
plt.plot(xx, poly(xx), '-')
plt.show()

enter image description here

当然,拟合的多项式正好穿过这些点:

>>> yf
array([ 1.03101335,  2.94879161,  2.87288739])
>>> poly(xf)
array([ 1.03101335,  2.94879161,  2.87288739])

如果使用curve_fit(),则可以使用sigma参数为每个点赋予权重。下面的例子给出了第一点、中间点、最后一点非常小的sigma,因此拟合结果将非常接近这三点:

N = 20
x = np.linspace(0, 2, N)
np.random.seed(1)
noise = np.random.randn(N)*0.2
sigma =np.ones(N)
sigma[[0, N//2, -1]] = 0.01
pr = (-2, 3, 0, 1)
y = 1+3.0*x**2-2*x**3+0.3*x**4 + noise

def f(x, *p):
    return np.poly1d(p)(x)

p1, _ = optimize.curve_fit(f, x, y, (0, 0, 0, 0, 0), sigma=sigma)
p2, _ = optimize.curve_fit(f, x, y, (0, 0, 0, 0, 0))

x2 = np.linspace(0, 2, 100)
y2 = np.poly1d(p)(x2)
plot(x, y, "o")
plot(x2, f(x2, *p1), "r", label=u"fix three points")
plot(x2, f(x2, *p2), "b", label=u"no fix")
legend(loc="best")

enter image description here

一种简单直接的方法是利用约束最小二乘法,其中约束用较大的数字M加权,例如:

from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V

def clsq(A, b, C, d, M= 1e5):
    """A simple constrained least squared solution of Ax= b, s.t. Cx= d,
    based on the idea of weighting constraints with a largish number M."""
    return solve(dot(A.T, A)+ M* dot(C.T, C), dot(A.T, b)+ M* dot(C.T, d))

def cpf(x, y, x_c, y_c, n, M= 1e5):
    """Constrained polynomial fit based on clsq solution."""
    return P(clsq(V(x, n), y, V(x_c, n), y_c, M))

显然,这并不是一个真正的“包罗万象的银弹”解决方案,但显然,对于一个简单的例子来说,它似乎工作得很好(for M in [0, 4, 24, 124, 624, 3124]):

In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)    

In []: plot(x, y, 'bo', x_f, y_f, 'bs', x_s, sin(x_s), 'b--')
Out[]: <snip>

In []: for M in 5** (arange(6))- 1:
   ....:     plot(x_s, cpf(x, y, x_f, y_f, n, M)(x_s))
   ....: 
Out[]: <snip>

In []: ylim([-1.5, 1.5])
Out[]: <snip>
In []: show()

并产生如下输出: fits with progressive larger M

编辑:添加了“精确”解决方案:

from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
from scipy.linalg import qr 

def solve_ns(A, b): return solve(dot(A.T, A), dot(A.T, b))

def clsq(A, b, C, d):
    """An 'exact' constrained least squared solution of Ax= b, s.t. Cx= d"""
    p= C.shape[0]
    Q, R= qr(C.T)
    xr, AQ= solve(R[:p].T, d), dot(A, Q)
    xaq= solve_ns(AQ[:, p:], b- dot(AQ[:, :p], xr))
    return dot(Q[:, :p], xr)+ dot(Q[:, p:], xaq)

def cpf(x, y, x_c, y_c, n):
    """Constrained polynomial fit based on clsq solution."""
    return P(clsq(V(x, n), y, V(x_c, n), y_c))

并测试适合性:

In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: p= cpf(x, y, x_f, y_f, n)
In []: p(x_f)
Out[]: array([ 1., -1.,  1., -1.])

相关问题 更多 >