python中函数的自适应绘制

2024-04-27 02:39:20 发布

您现在位置:Python中文网/ 问答频道 /正文

一个简单的问题:我有一个函数f(t),它应该在[0,1]的某个点上有一个尖峰。一个自然的想法是使用这个函数的自适应采样来获得一个很好的“自适应”图。在Python+matplotlib+numpy+whatever中如何快速地实现这一点呢?我可以计算[0,1]上任何t的f(t)。在

似乎Mathematica有这个选项,Python有吗?在


Tags: 函数numpymatplotlib选项尖峰whatevermathematica
3条回答

看我找到了什么:Adaptive sampling of 1D functions,来自scipy-central.org的链接。在

代码是:

# License: Creative Commons Zero (almost public domain) http://scpyce.org/cc0

import numpy as np

def sample_function(func, points, tol=0.05, min_points=16, max_level=16,
                    sample_transform=None):
    """
    Sample a 1D function to given tolerance by adaptive subdivision.

    The result of sampling is a set of points that, if plotted,
    produces a smooth curve with also sharp features of the function
    resolved.

    Parameters
         
    func : callable
        Function func(x) of a single argument. It is assumed to be vectorized.
    points : array-like, 1D
        Initial points to sample, sorted in ascending order.
        These will determine also the bounds of sampling.
    tol : float, optional
        Tolerance to sample to. The condition is roughly that the total
        length of the curve on the (x, y) plane is computed up to this
        tolerance.
    min_point : int, optional
        Minimum number of points to sample.
    max_level : int, optional
        Maximum subdivision depth.
    sample_transform : callable, optional
        Function w = g(x, y). The x-samples are generated so that w
        is sampled.

    Returns
       -
    x : ndarray
        X-coordinates
    y : ndarray
        Corresponding values of func(x)

    Notes
      -
    This routine is useful in computing functions that are expensive
    to compute, and have sharp features  - it makes more sense to
    adaptively dedicate more sampling points for the sharp features
    than the smooth parts.

    Examples
        
    >>> def func(x):
    ...     '''Function with a sharp peak on a smooth background'''
    ...     a = 0.001
    ...     return x + a**2/(a**2 + x**2)
    ...
    >>> x, y = sample_function(func, [-1, 1], tol=1e-3)

    >>> import matplotlib.pyplot as plt
    >>> xx = np.linspace(-1, 1, 12000)
    >>> plt.plot(xx, func(xx), '-', x, y[0], '.')
    >>> plt.show()

    """
    return _sample_function(func, points, values=None, mask=None, depth=0,
                            tol=tol, min_points=min_points, max_level=max_level,
                            sample_transform=sample_transform)

def _sample_function(func, points, values=None, mask=None, tol=0.05,
                     depth=0, min_points=16, max_level=16,
                     sample_transform=None):
    points = np.asarray(points)

    if values is None:
        values = np.atleast_2d(func(points))

    if mask is None:
        mask = Ellipsis

    if depth > max_level:
        # recursion limit
        return points, values

    x_a = points[...,:-1][...,mask]
    x_b = points[...,1:][...,mask]

    x_c = .5*(x_a + x_b)
    y_c = np.atleast_2d(func(x_c))

    x_2 = np.r_[points, x_c]
    y_2 = np.r_['-1', values, y_c]
    j = np.argsort(x_2)

    x_2 = x_2[...,j]
    y_2 = y_2[...,j]

    #   Determine the intervals at which refinement is necessary

    if len(x_2) < min_points:
        mask = np.ones([len(x_2)-1], dtype=bool)
    else:
        # represent the data as a path in N dimensions (scaled to unit box)
        if sample_transform is not None:
            y_2_val = sample_transform(x_2, y_2)
        else:
            y_2_val = y_2

        p = np.r_['0',
                  x_2[None,:],
                  y_2_val.real.reshape(-1, y_2_val.shape[-1]),
                  y_2_val.imag.reshape(-1, y_2_val.shape[-1])
                  ]

        sz = (p.shape[0]-1)//2

        xscale = x_2.ptp(axis=-1)
        yscale = abs(y_2_val.ptp(axis=-1)).ravel()

        p[0] /= xscale
        p[1:sz+1] /= yscale[:,None]
        p[sz+1:]  /= yscale[:,None]

        # compute the length of each line segment in the path
        dp = np.diff(p, axis=-1)
        s = np.sqrt((dp**2).sum(axis=0))
        s_tot = s.sum()

        # compute the angle between consecutive line segments
        dp /= s
        dcos = np.arccos(np.clip((dp[:,1:] * dp[:,:-1]).sum(axis=0), -1, 1))

        # determine where to subdivide: the condition is roughly that
        # the total length of the path (in the scaled data) is computed
        # to accuracy `tol`
        dp_piece = dcos * .5*(s[1:] + s[:-1])
        mask = (dp_piece > tol * s_tot)

        mask = np.r_[mask, False]
        mask[1:] |= mask[:-1].copy()


    #   Refine, if necessary

    if mask.any():
        return _sample_function(func, x_2, y_2, mask, tol=tol, depth=depth+1,
                                min_points=min_points, max_level=max_level,
                                sample_transform=sample_transform)
    else:
        return x_2, y_2

看起来https://github.com/python-adaptive/adaptive就是这样做的一种尝试,还有更多:

adaptive

Tools for adaptive parallel sampling of mathematical functions.

adaptive is an open-source Python library designed to make adaptive parallel function evaluation simple. With adaptive you just supply a function with its bounds, and it will be evaluated at the “best” points in parameter space. With just a few lines of code you can evaluate functions on a computing cluster, live-plot the data as it returns, and fine-tune the adaptive sampling algorithm.

这个项目也受到了这个问题另一个答案中的代码的启发(或者至少是一个相关的项目):

Credits

...

  • Pauli Virtanen for his AdaptiveTriSampling script (no longer available online since SciPy Central went down) which served as inspiration for the ~adaptive.Learner2D.

出于绘图目的,不需要对自适应采样。为什么不在屏幕分辨率或更高的分辨率下采样呢?在

POINTS=1920

from pylab import *
x = arange(0,1,1.0/POINTS)
y = sin(3.14*x)
plot(x,y)
axes().set_aspect('equal') ## optional aspect-ratio control
show()

如果需要任意采样密度,或者函数与矢量化方法不兼容,可以逐点构建x,y数组。中间值将由plot()函数进行线性插值。在

^{pr2}$

相关问题 更多 >