在Python Pandas Dataframe中动态添加列进行数据处理

1 投票
1 回答
3440 浏览
提问于 2025-04-18 06:06

我遇到了一个问题。

假设这是我的CSV文件:

id f1 f2 f3
1  4  5  5
1  3  1  0
1  7  4  4
1  4  3  1
1  1  4  6
2  2  6  0
..........

我的数据行可以根据id进行分组。 我想要生成一个如下所示的CSV作为输出。

f1 f2 f3 f1_n f2_n f3_n f1_n_n f2_n_n f3_n_n f1_t f2_t f3_t
4  5  5   3   1    0    7      4      4      1   4     6  

我希望能够选择要抓取的行数,并将其转换为列(总是从某个id的第一行开始)。在这个例子中,我抓取了3行。 然后我还会跳过一行或多行(在这个例子中只跳过一行),以便从同一id组的最后一行获取最终的列。出于某种原因,我想使用数据框。

经过3到4个小时的挣扎,我找到了一个解决方案,如下所示。 但是我的解决方案速度很慢。我大约有70万行数据,可能有大约7万组id。上面的代码在model=3时,在我这台4GB内存、4核的联想电脑上几乎花了一个小时。我需要将model设置为10或15。 我在Python方面还是个新手,我相信可以做出一些改动来加快速度。有人能详细解释一下我该如何改进代码吗?

非常感谢。

model:要抓取的行数

# train data frame from reading the csv
train = pd.read_csv(filename)

# Get groups of rows with same id
csv_by_id = train.groupby('id')

modelTarget = { 'f1_t','f2_t','f3_t'}

# modelFeatures is a list of features I am interested in the csv. 
    # The csv actually has hundreds
modelFeatures = { 'f1, 'f2' , 'f3' }

coreFeatures = list(modelFeatures) # cloning 


selectedFeatures = list(modelFeatures) # cloning

newFeatures = list(selectedFeatures) # cloning

finalFeatures = list(selectedFeatures) # cloning

# Now create the column list depending on the number of rows I will grab from
for x in range(2,model+1):
    newFeatures = [s + '_n' for s in newFeatures]
    finalFeatures = finalFeatures + newFeatures

# This is the final column list for my one row in the final data frame
selectedFeatures = finalFeatures + list(modelTarget) 

# Empty dataframe which I want to populate
model_data = pd.DataFrame(columns=selectedFeatures)

for id_group in csv_by_id:
    #id_group is a tuple with first element as the id itself and second one a dataframe with the rows of a group
    group_data = id_group[1] 

    #hmm - can this be better? I am picking up the rows which I need from first row on wards
    df = group_data[coreFeatures][0:model] 

    # initialize a list
    tmp = [] 

    # now keep adding the column values into the list
    for index, row in df.iterrows(): 
        tmp = tmp + list(row)


    # Wow, this one below surely should have something better. 
    # So i am picking up the feature column values from the last row of the group of rows for a particular id 
    targetValues = group_data[list({'f1','f2','f3'})][len(group_data.index)-1:len(group_data.index)].values 

    # Think this can be done easier too ? . Basically adding the values to the tmp list again
    tmp = tmp + list(targetValues.flatten()) 

    # coverting the list to a dict.
    tmpDict = dict(zip(selectedFeatures,tmp))  

    # then the dict to a dataframe.
    tmpDf = pd.DataFrame(tmpDict,index={1}) 

    # I just could not find a better way of adding a dict or list directly into a dataframe. 
    # And I went through lots and lots of blogs on this topic, including some in StackOverflow.

    # finally I add the frame to my main frame
    model_data = model_data.append(tmpDf) 

# and write it
model_data.to_csv(wd+'model_data' + str(model) + '.csv',index=False) 

1 个回答

4

分组操作是你的好帮手。

这个方法的效率很高;特征数量只会增加一点点。大致上,它的复杂度是 O(组的数量)

In [28]: features = ['f1','f2','f3']

先创建一些测试数据,组的大小在7到12之间,总共有7万组。

In [29]: def create_df(i):
   ....:     l = np.random.randint(7,12)
   ....:     df = DataFrame(dict([ (f,np.arange(l)) for f in features ]))
   ....:     df['A'] = i
   ....:     return df
   ....: 

In [30]: df = concat([ create_df(i) for i in xrange(70000) ])

In [39]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 629885 entries, 0 to 9
Data columns (total 4 columns):
f1    629885 non-null int64
f2    629885 non-null int64
f3    629885 non-null int64
A     629885 non-null int64
dtypes: int64(4)

创建一个数据框,从每个组中选择前3行和最后一行(注意,这个方法可以处理小于4的组,但最后一行可能会和其他组重叠,你可能需要用 groupby.filter 来解决这个问题)。

In [31]: groups = concat([df.groupby('A').head(3),df.groupby('A').tail(1)]).sort_index()

# This step is necesary in pandas < master/0.14 as the returned fields 
# will include the grouping field (the A), (is a bug/API issue)
In [33]: groups = groups[features]

In [34]: groups.head(20)
Out[34]: 
     f1  f2  f3
A              
0 0   0   0   0
  1   1   1   1
  2   2   2   2
  7   7   7   7
1 0   0   0   0
  1   1   1   1
  2   2   2   2
  9   9   9   9
2 0   0   0   0
  1   1   1   1
  2   2   2   2
  8   8   8   8
3 0   0   0   0
  1   1   1   1
  2   2   2   2
  8   8   8   8
4 0   0   0   0
  1   1   1   1
  2   2   2   2
  9   9   9   9

[20 rows x 3 columns]

In [38]: groups.info()
<class 'pandas.core.frame.DataFrame'>
MultiIndex: 280000 entries, (0, 0) to (69999, 9)
Data columns (total 3 columns):
f1    280000 non-null int64
f2    280000 non-null int64
f3    280000 non-null int64
dtypes: int64(3)

而且速度很快。

In [32]: %timeit concat([df.groupby('A').head(3),df.groupby('A').tail(1)]).sort_index()
1 loops, best of 3: 1.16 s per loop

如果你想进一步处理数据,通常在这里就可以停止,使用这个(因为它已经是一个很好处理的分组格式)。

如果你想把这个转换成宽格式

In [35]: dfg = groups.groupby(level=0).apply(lambda x: Series(x.values.ravel()))

In [36]: %timeit groups.groupby(level=0).apply(lambda x: Series(x.values.ravel()))
dfg.head()
groups.info()
1 loops, best of 3: 14.5 s per loop
In [40]: dfg.columns = [ "{0}_{1}".format(f,i) for i in range(1,5) for f in features ]

In [41]: dfg.head()
Out[41]: 
   f1_1  f2_1  f3_1  f1_2  f2_2  f3_2  f1_3  f2_3  f3_3  f1_4  f2_4  f3_4
A                                                                        
0     0     0     0     1     1     1     2     2     2     7     7     7
1     0     0     0     1     1     1     2     2     2     9     9     9
2     0     0     0     1     1     1     2     2     2     8     8     8
3     0     0     0     1     1     1     2     2     2     8     8     8
4     0     0     0     1     1     1     2     2     2     9     9     9

[5 rows x 12 columns]

In [42]: dfg.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 70000 entries, 0 to 69999
Data columns (total 12 columns):
f1_1    70000 non-null int64
f2_1    70000 non-null int64
f3_1    70000 non-null int64
f1_2    70000 non-null int64
f2_2    70000 non-null int64
f3_2    70000 non-null int64
f1_3    70000 non-null int64
f2_3    70000 non-null int64
f3_3    70000 non-null int64
f1_4    70000 non-null int64
f2_4    70000 non-null int64
f3_4    70000 non-null int64
dtypes: int64(12)

撰写回答