绘制同一社区或分区的网络和分组顶点
我需要在网络中展示(绘制或图示)社区结构。
我现在有这个:
import igraph
from random import randint
def _plot(g, membership=None):
layout = g.layout("kk")
visual_style = {}
visual_style["edge_color"] = "gray"
visual_style["vertex_size"] = 30
visual_style["layout"] = layout
visual_style["bbox"] = (1024, 768)
visual_style["margin"] = 40
for vertex in g.vs():
vertex["label"] = vertex.index
if membership is not None:
colors = []
for i in range(0, max(membership)+1):
colors.append('%06X' % randint(0, 0xFFFFFF))
for vertex in g.vs():
vertex["color"] = str('#') + colors[membership[vertex.index]]
visual_style["vertex_color"] = g.vs["color"]
igraph.plot(g, **visual_style)
if __name__ == "__main__":
karate = igraph.Nexus.get("karate")
cl = karate.community_fastgreedy()
membership = cl.as_clustering().membership
_plot(karate, membership)
但是这些点(节点)分散得很。在其他网络中,这个结果更糟糕。
我希望这些点(节点)能够按颜色分组,聚集在相似的区域。
比如:
3 个回答
1
要把一个社区的节点聚在一起并突出显示,你应该使用 'mark_groups=True' 这个选项。详细信息可以查看这个链接:http://igraph.org/python/doc/igraph.clustering-pysrc.html#VertexClustering.plot
1
去掉多个社区之间的连接边,计算没有这些边的布局,然后再把这个布局应用到原始图上。
4
根据@gabor-csardi的回答,我写了这段代码:
import igraph
from random import randint
def _plot(g, membership=None):
if membership is not None:
gcopy = g.copy()
edges = []
edges_colors = []
for edge in g.es():
if membership[edge.tuple[0]] != membership[edge.tuple[1]]:
edges.append(edge)
edges_colors.append("gray")
else:
edges_colors.append("black")
gcopy.delete_edges(edges)
layout = gcopy.layout("kk")
g.es["color"] = edges_colors
else:
layout = g.layout("kk")
g.es["color"] = "gray"
visual_style = {}
visual_style["vertex_label_dist"] = 0
visual_style["vertex_shape"] = "circle"
visual_style["edge_color"] = g.es["color"]
# visual_style["bbox"] = (4000, 2500)
visual_style["vertex_size"] = 30
visual_style["layout"] = layout
visual_style["bbox"] = (1024, 768)
visual_style["margin"] = 40
visual_style["edge_label"] = g.es["weight"]
for vertex in g.vs():
vertex["label"] = vertex.index
if membership is not None:
colors = []
for i in range(0, max(membership)+1):
colors.append('%06X' % randint(0, 0xFFFFFF))
for vertex in g.vs():
vertex["color"] = str('#') + colors[membership[vertex.index]]
visual_style["vertex_color"] = g.vs["color"]
igraph.plot(g, **visual_style)
if __name__ == "__main__":
g = igraph.Nexus.get("karate")
cl = g.community_fastgreedy()
membership = cl.as_clustering().membership
_plot(g, membership)
结果: