Python中的Dijkstra算法

28 投票
13 回答
121319 浏览
提问于 2025-04-18 01:36

我正在尝试用数组在Python中实现Dijkstra算法。这是我的实现代码。

def extract(Q, w):
    m=0
    minimum=w[0]
    for i in range(len(w)):
        if w[i]<minimum:
            minimum=w[i]
            m=i
    return m, Q[m]

def dijkstra(G, s, t='B'):
    Q=[s]
    p={s:None}
    w=[0]
    d={}
    for i in G:
        d[i]=float('inf')
        Q.append(i)
        w.append(d[i])
    d[s]=0
    S=[]
    n=len(Q)
    while Q:
        u=extract(Q,w)[1]
        S.append(u)
        #w.remove(extract(Q, d, w)[0])
        Q.remove(u)
        for v in G[u]:
            if d[v]>=d[u]+G[u][v]:
                d[v]=d[u]+G[u][v]
                p[v]=u
    return d, p

B='B'
A='A'
D='D'
G='G'
E='E'
C='C'
F='F'
G={B:{A:5, D:1, G:2}, A:{B:5, D:3, E:12, F:5}, D:{B:1, G:1, E:1, A:3}, G:{B:2, D:1, C:2}, C:{G:2, E:1, F:16}, E:{A:12, D:1, C:1, F:2}, F:{A:5, E:2, C:16}}
print "Assuming the start vertex to be B:"
print "Shortest distances", dijkstra(G, B)[0]
print "Parents", dijkstra(G, B)[1]

我期望得到的结果是:

Assuming the start vertex to be B:
Shortest distances {'A': 4, 'C': 4, 'B': 0, 'E': 2, 'D': 1, 'G': 2, 'F': 4}
Parents {'A': 'D', 'C': 'G', 'B': None, 'E': 'D', 'D': 'B', 'G': 'D', 'F': 'E'}

但是,我得到的结果却是:

Assuming the start vertex to be B:
Shortest distances {'A': 4, 'C': 4, 'B': 0, 'E': 2, 'D': 1, 'G': 2, 'F': 10}
Parents {'A': 'D', 'C': 'G', 'B': None, 'E': 'D', 'D': 'B', 'G': 'D', 'F': 'A'}.

对于节点F,程序给出的答案不正确。有人能告诉我这是为什么吗?

13 个回答

8

这不是我的答案——我的教授做得比我尝试的要高效得多。这里是他的做法,显然使用了辅助函数来处理那些重复的任务。

def dijkstra(graph, source):

    vertices, edges = graph
    dist = dict()
    previous = dict()

    for vertex in vertices:
        dist[vertex] = float("inf")
        previous[vertex] = None

    dist[source] = 0
    Q = set(vertices)

    while len(Q) > 0:
        u = minimum_distance(dist, Q)
        print('Currently considering', u, 'with a distance of', dist[u])
        Q.remove(u)

        if dist[u] == float('inf'):
            break

        n = get_neighbours(graph, u)
        for vertex in n:
            alt = dist[u] + dist_between(graph, u, vertex)
            if alt < dist[vertex]:
                dist[vertex] = alt
                previous[vertex] = u

    return previous

给定一个图

({'A', 'B', 'C', 'D'}, {('A', 'B', 5), ('B', 'A', 5), ('B', 'C', 10), ('B', 'D', 6), ('C', 'D', 2), ('D', 'C', 2)})

命令 print(dijkstra(graph, 'A') 的输出是

当前考虑 A,距离为 0

当前考虑 B,距离为 5

当前考虑 D,距离为 11

当前考虑 C,距离为 13

也就是说:

{'C': 'D', 'D': 'B', 'A': None, 'B': 'A'} => 顺序是随机的

10

我需要一个能返回路径的解决方案,所以我结合了多个问题和答案的思路,写了一个简单的类,使用了迪杰斯特拉算法:

class Dijkstra:

    def __init__(self, vertices, graph):
        self.vertices = vertices  # ("A", "B", "C" ...)
        self.graph = graph  # {"A": {"B": 1}, "B": {"A": 3, "C": 5} ...}

    def find_route(self, start, end):
        unvisited = {n: float("inf") for n in self.vertices}
        unvisited[start] = 0  # set start vertex to 0
        visited = {}  # list of all visited nodes
        parents = {}  # predecessors
        while unvisited:
            min_vertex = min(unvisited, key=unvisited.get)  # get smallest distance
            for neighbour, _ in self.graph.get(min_vertex, {}).items():
                if neighbour in visited:
                    continue
                new_distance = unvisited[min_vertex] + self.graph[min_vertex].get(neighbour, float("inf"))
                if new_distance < unvisited[neighbour]:
                    unvisited[neighbour] = new_distance
                    parents[neighbour] = min_vertex
            visited[min_vertex] = unvisited[min_vertex]
            unvisited.pop(min_vertex)
            if min_vertex == end:
                break
        return parents, visited

    @staticmethod
    def generate_path(parents, start, end):
        path = [end]
        while True:
            key = parents[path[0]]
            path.insert(0, key)
            if key == start:
                break
        return path

下面是一个示例图和使用方法(这个图是用一个很棒的工具生成的): 在这里输入图片描述

input_vertices = ("A", "B", "C", "D", "E", "F", "G")
input_graph = {
    "A": {"B": 5, "D": 3, "E": 12, "F": 5},
    "B": {"A": 5, "D": 1, "G": 2},
    "C": {"E": 1, "F": 16, "G": 2},
    "D": {"A": 3, "B": 1, "E": 1, "G": 1},
    "E": {"A": 12, "C": 1, "D": 1, "F": 2},
    "F": {"A": 5, "C": 16, "E": 2},
    "G": {"B": 2, "C": 2, "D": 1}
}
start_vertex = "B"
end_vertex= "C"
dijkstra = Dijkstra(input_vertices, input_graph)
p, v = dijkstra.find_route(start_vertex, end_vertex)
print("Distance from %s to %s is: %.2f" % (start_vertex, end_vertex, v[end_vertex]))
se = dijkstra.generate_path(p, start_vertex, end_vertex)
print("Path from %s to %s is: %s" % (start_vertex, end_vertex, " -> ".join(se)))

输出结果

Distance from B to C is: 3.00
Path from B to C is: B -> D -> E -> C
12

我把它写得更详细一些,以便让初学者更容易理解:

def get_parent(pos):
    return (pos + 1) // 2 - 1


def get_children(pos):
    right = (pos + 1) * 2
    left = right - 1
    return left, right


def swap(array, a, b):
    array[a], array[b] = array[b], array[a]


class Heap:

    def __init__(self):
        self._array = []

    def peek(self):
        return self._array[0] if self._array else None

    def _get_smallest_child(self, parent):
        return min([
            it
            for it in get_children(parent)
            if it < len(self._array)
        ], key=lambda it: self._array[it], default=-1)

    def _sift_down(self):
        parent = 0
        smallest = self._get_smallest_child(parent)
        while smallest != -1 and self._array[smallest] < self._array[parent]:
            swap(self._array, smallest, parent)
            parent, smallest = smallest, self._get_smallest_child(smallest)

    def pop(self):
        if not self._array:
            return None
        swap(self._array, 0, len(self._array) - 1)
        node = self._array.pop()
        self._sift_down()
        return node

    def _sift_up(self):
        index = len(self._array) - 1
        parent = get_parent(index)
        while parent != -1 and self._array[index] < self._array[parent]:
            swap(self._array, index, parent)
            index, parent = parent, get_parent(parent)

    def add(self, item):
        self._array.append(item)
        self._sift_up()

    def __bool__(self):
        return bool(self._array)


def backtrack(best_parents, start, end):
    if end not in best_parents:
        return None
    cursor = end
    path = [cursor]
    while cursor in best_parents:
        cursor = best_parents[cursor]
        path.append(cursor)
        if cursor == start:
            return list(reversed(path))
    return None


def dijkstra(weighted_graph, start, end):
    """
    Calculate the shortest path for a directed weighted graph.

    Node can be virtually any hashable datatype.

    :param start: starting node
    :param end: ending node
    :param weighted_graph: {"node1": {"node2": weight, ...}, ...}
    :return: ["START", ... nodes between ..., "END"] or None, if there is no
            path
    """
    distances = {i: float("inf") for i in weighted_graph}
    best_parents = {i: None for i in weighted_graph}

    to_visit = Heap()
    to_visit.add((0, start))
    distances[start] = 0

    visited = set()

    while to_visit:
        src_distance, source = to_visit.pop()
        if src_distance > distances[source]:
            continue
        if source == end:
            break
        visited.add(source)
        for target, distance in weighted_graph[source].items():
            if target in visited:
                continue
            new_dist = distances[source] + weighted_graph[source][target]
            if distances[target] > new_dist:
                distances[target] = new_dist
                best_parents[target] = source
                to_visit.add((new_dist, target))

    return backtrack(best_parents, start, end)
20

这个实现只使用了数组和堆这种数据结构。

import heapq as hq
import math

def dijkstra(G, s):
    n = len(G)
    visited = [False]*n
    weights = [math.inf]*n
    path = [None]*n
    queue = []
    weights[s] = 0
    hq.heappush(queue, (0, s))
    while len(queue) > 0:
        g, u = hq.heappop(queue)
        visited[u] = True
        for v, w in G[u]:
            if not visited[v]:
                f = g + w
                if f < weights[v]:
                    weights[v] = f
                    path[v] = u
                    hq.heappush(queue, (f, v))
    return path, weights

G = [[(1, 6), (3, 7)],
     [(2, 5), (3, 8), (4, -4)],
     [(1, -2), (4, 7)],
     [(2, -3), (4, 9)],
     [(0, 2)]]

print(dijkstra(G, 0))

我希望这能帮助到某个人,虽然有点晚了。

45

正如其他人提到的,由于没有使用易懂的变量名,调试你的代码几乎是不可能的。

根据维基百科上关于迪杰斯特拉算法的文章,你可以按照以下方式来实现它(当然还有很多其他的方法):

nodes = ('A', 'B', 'C', 'D', 'E', 'F', 'G')
distances = {
    'B': {'A': 5, 'D': 1, 'G': 2},
    'A': {'B': 5, 'D': 3, 'E': 12, 'F' :5},
    'D': {'B': 1, 'G': 1, 'E': 1, 'A': 3},
    'G': {'B': 2, 'D': 1, 'C': 2},
    'C': {'G': 2, 'E': 1, 'F': 16},
    'E': {'A': 12, 'D': 1, 'C': 1, 'F': 2},
    'F': {'A': 5, 'E': 2, 'C': 16}}

unvisited = {node: None for node in nodes} #using None as +inf
visited = {}
current = 'B'
currentDistance = 0
unvisited[current] = currentDistance

while True:
    for neighbour, distance in distances[current].items():
        if neighbour not in unvisited: continue
        newDistance = currentDistance + distance
        if unvisited[neighbour] is None or unvisited[neighbour] > newDistance:
            unvisited[neighbour] = newDistance
    visited[current] = currentDistance
    del unvisited[current]
    if not unvisited: break
    candidates = [node for node in unvisited.items() if node[1]]
    current, currentDistance = sorted(candidates, key = lambda x: x[1])[0]

print(visited)

这段代码比必要的要啰嗦一些,我希望你能通过对比你的代码和我的代码,发现一些不同之处。

结果是:

{'E': 2, 'D': 1, 'G': 2, 'F': 4, 'A': 4, 'C': 3, 'B': 0}

撰写回答