SKLearn 交叉验证错误 -- 类型错误

0 投票
1 回答
1685 浏览
提问于 2025-04-18 00:37

我正在尝试对我的KNN分类器的结果进行交叉验证。我使用了以下代码,但出现了类型错误。

为了让你更明白,我已经导入了SciKit Learn、Numpy和Pandas这几个库。

from sklearn.cross_validation import cross_val_score, ShuffleSplit

n_samples = len(y)
knn = KNeighborsClassifier(3)
cv = ShuffleSplit(n_samples, n_iter=10, test_size=0.3, random_state=0)

test_scores = cross_val_score(knn, X, y, cv=cv)
test_scores.mean()

返回结果:

    ---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-139-d8cc3ee0c29b> in <module>()
  7 cv = ShuffleSplit(n_samples, n_iter=10, test_size=0.3, random_state=0)
  8 
  9 test_scores = cross_val_score(knn, X, y, cv=cv)
 10 test_scores.mean()

//anaconda/lib/python2.7/site-packages/sklearn/cross_validation.pyc in     cross_val_score(estimator, X, y, scoring, cv, n_jobs, verbose, fit_params, score_func, pre_dispatch)
1150         delayed(_cross_val_score)(clone(estimator), X, y, scorer, train, test,
1151                                   verbose, fit_params)
1152         for train, test in cv)
1153     return np.array(scores)
1154 

//anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
515         try:
516             for function, args, kwargs in iterable:
517                 self.dispatch(function, args, kwargs)
518 
519             self.retrieve()
//anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in dispatch(self, func, args, kwargs)
310         """
311         if self._pool is None:
312             job = ImmediateApply(func, args, kwargs)
313             index = len(self._jobs)
314             if not _verbosity_filter(index, self.verbose):
//anaconda/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __init__(self, func, args, kwargs)
134         # Don't delay the application, to avoid keeping the input
135         # arguments in memory
136         self.results = func(*args, **kwargs)
137 
138     def get(self):

//anaconda/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _cross_val_score(estimator, X, y, scorer, train, test, verbose, fit_params)
1056         y_test = None
1057     else:
1058         y_train = y[train]
1059         y_test = y[test]
1060     estimator.fit(X_train, y_train, **fit_params)

TypeError: only integer arrays with one element can be converted to an index

1 个回答

1

这是一个与pandas库有关的错误。Scikit-learn这个库希望接收到的是numpy数组、稀疏矩阵,或者是类似这些的对象。

pandas的DataFrame主要问题在于,当你用[...]来索引时,它是选择列而不是行。要选择行的话,应该使用DataFrame.loc[...]。这个行为对于sklearn来说是意外的。因此,错误可能出现在第1058行,代码在提取训练样本时出现了问题。

要解决这个问题,如果你的y是DataFrame中的一列,试着把这一列转换成数组类型。

y = y.values

否则,你可以考虑使用pandas-sklearn这个库。

撰写回答