使用MatPlotLib绘制热力世界地图
我正在尝试把我创建的世界地图和一个热力图结合在一起。我手头有一个CSV文件,里面有三列数据。第一列是国家的名字,第二列和第三列分别是这个国家的纬度和经度。现在我写了一个类,可以根据这些坐标在世界地图上标出点,这个功能很好用。但我现在想要的是热力图,因为如果只有几个点,看起来还不错,但我将会有很多很多的点。所以,热力图应该根据每个国家的点的数量和指定的边界来生成。
import csv
class toMap:
def setMap(self):
filename = 'log.csv'
lats, lons = [], []
with open(filename) as f:
reader = csv.reader(f)
next(reader)
for row in reader:
lats.append(float(row[1]))
lons.append(float(row[2]))
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
map = Basemap(projection='robin', resolution='l', area_thresh=1000.0,
lat_0=0, lon_0=-130)
map.drawcoastlines()
map.drawcountries()
map.fillcontinents(color='gray')
#map.bluemarble()
#map.drawmapboundary()
map.drawmeridians(np.arange(0, 360, 30))
map.drawparallels(np.arange(-90, 90, 30))
x, y = map(lons, lats)
map.plot(x, y, 'ro', markersize=3)
plt.show()
def main():
m = toMap()
m.setMap()
这里是这个CSV文件的一个例子:
Vietnam,10.35,106.35
United States,30.3037,-97.7696
Colombia,4.6,-74.0833
China,35.0,105.0
Indonesia,-5.0,120.0
United States,38.0,-97.0
United States,41.7511,-88.1462
Bosnia and Herzegovina,43.85,18.3833
United States,33.4549,-112.0777
1 个回答
7
根据我之前评论的思路,我对你的代码做了一些修改,以便得到你想要的地图。
我的解决方案使用了cartopy库。
下面是你的代码,包含了我的修改(和注释):
import csv
class toMap:
def setMap(self):
# --- Save Countries, Latitudes and Longitudes ---
filename = 'log.csv'
pais, lats, lons = [], [], []
with open(filename) as f:
reader = csv.reader(f)
next(reader)
for row in reader:
pais.append(str(row[0]))
lats.append(float(row[1]))
lons.append(float(row[2]))
#count the number of times a country is in the list
unique_pais = set(pais)
unique_pais = list(unique_pais)
c_numero = []
for p in unique_pais:
c_numero.append(pais.count(p))
print p, pais.count(p)
maximo = max(c_numero)
# --- Build Map ---
import cartopy.crs as ccrs
import cartopy.io.shapereader as shpreader
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
cmap = mpl.cm.Blues
# --- Using the shapereader ---
test = 0
shapename = 'admin_0_countries'
countries_shp = shpreader.natural_earth(resolution='110m',
category='cultural', name=shapename)
ax = plt.axes(projection=ccrs.Robinson())
for country in shpreader.Reader(countries_shp).records():
nome = country.attributes['name_long']
if nome in unique_pais:
i = unique_pais.index(nome)
numero = c_numero[i]
ax.add_geometries(country.geometry, ccrs.PlateCarree(),
facecolor=cmap(numero / float(maximo), 1),
label=nome)
test = test + 1
else:
ax.add_geometries(country.geometry, ccrs.PlateCarree(),
facecolor='#FAFAFA',
label=nome)
if test != len(unique_pais):
print "check the way you are writting your country names!"
plt.show()
def main():
m = toMap()
m.setMap()
我根据你的思路,制作了一个自定义的log.csv文件,里面有一些国家,下面是我的地图:

(我使用了蓝色调的配色方案,颜色的最大值是根据一个国家在你的csv文件中出现的次数来定义的。)
根据你在编辑问题之前的示例图片,我觉得这正是你想要的效果!