使用 Python OpenCV 追踪白色
我想用网络摄像头和Python的OpenCV库来追踪白色。其实我已经有了追踪蓝色的代码。
_, frame = cap.read()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# define range of blue color in HSV
lower_blue = np.array([110,100,100])
upper_blue = np.array([130,255,255])
#How to define this range for white color
# Threshold the HSV image to get only blue colors
mask = cv2.inRange(hsv, lower_blue, upper_blue)
# Bitwise-AND mask and original image
res = cv2.bitwise_and(frame,frame, mask= mask)
cv2.imshow('frame',frame)
cv2.imshow('mask',mask)
cv2.imshow('res',res)
那么,我应该给出什么样的值作为追踪白色的下限和上限呢?我试着改变这些值,得到了其他颜色,但就是没法追踪到白色!!!
这些下限和上限的值是HSV值还是BGR值呢??
另外,我最后得到的结果必须是二值图像,以便进行后续处理!!
请帮帮我!!!
3 个回答
22
这是一个HSV颜色阈值脚本,可以通过滑块来确定颜色的上下限。
结果
使用这个样本图片:
设置这些上下阈值:
lower_white = np.array([0,0,168])
upper_white = np.array([172,111,255])
我们得到了孤立的白色像素(左边)和二进制掩膜(右边)。
这是脚本,记得更改输入图片的路径。
import cv2
import sys
import numpy as np
def nothing(x):
pass
# Load in image
image = cv2.imread('1.jpg')
# Create a window
cv2.namedWindow('image')
# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)
# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)
# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0
output = image
wait_time = 33
while(1):
# get current positions of all trackbars
hMin = cv2.getTrackbarPos('HMin','image')
sMin = cv2.getTrackbarPos('SMin','image')
vMin = cv2.getTrackbarPos('VMin','image')
hMax = cv2.getTrackbarPos('HMax','image')
sMax = cv2.getTrackbarPos('SMax','image')
vMax = cv2.getTrackbarPos('VMax','image')
# Set minimum and max HSV values to display
lower = np.array([hMin, sMin, vMin])
upper = np.array([hMax, sMax, vMax])
# Create HSV Image and threshold into a range.
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower, upper)
output = cv2.bitwise_and(image,image, mask= mask)
# Print if there is a change in HSV value
if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
phMin = hMin
psMin = sMin
pvMin = vMin
phMax = hMax
psMax = sMax
pvMax = vMax
# Display output image
cv2.imshow('image',output)
# Wait longer to prevent freeze for videos.
if cv2.waitKey(wait_time) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
61
我们来看看HSV颜色空间:
你需要的是接近中心且比较高的白色。可以从
sensitivity = 15
lower_white = np.array([0,0,255-sensitivity])
upper_white = np.array([255,sensitivity,255])
开始,然后根据你的需求调整阈值。
你也可以考虑使用HSL颜色空间,它代表色相、饱和度和亮度。这样你只需要关注亮度来检测白色,识别其他颜色也会变得简单。HSV和HSL都会把相似的颜色放得很近。而且HSL在检测白色时可能会更准确,原因如下:
21
我写了这个代码来追踪白色:
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while(1):
_, frame = cap.read()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# define range of white color in HSV
# change it according to your need !
lower_white = np.array([0,0,0], dtype=np.uint8)
upper_white = np.array([0,0,255], dtype=np.uint8)
# Threshold the HSV image to get only white colors
mask = cv2.inRange(hsv, lower_white, upper_white)
# Bitwise-AND mask and original image
res = cv2.bitwise_and(frame,frame, mask= mask)
cv2.imshow('frame',frame)
cv2.imshow('mask',mask)
cv2.imshow('res',res)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
我尝试追踪我手机的白色屏幕,得到了这个结果:
你可以试着改变HSV的数值。
你也可以试试HSL颜色空间,正如Legat所说,这样会更准确。