使用Python在图像中寻找连通分量
其实,一张图片被分成了3个颜色区间(0、1、2)。所以,任何落在特定区间的颜色都会被替换成这个区间的编号。因此,处理后的图片可以看成是这样一个矩阵:
a=[[2,1,2,2,1,1],
[2,2,1,2,1,1],
[2,1,3,2,1,1],
[2,2,2,1,1,2],
[2,2,1,1,2,2],
[2,2,1,1,2,2]]
接下来的步骤是计算连接的区域。每个区域会用字母(A、B、C、D、E、F等)来标记,我们还需要保持一个表格,记录每个标记对应的颜色区间,以及每个标记的像素数量。当然,如果有多个相连的同色区域,它们可能会有不同的标记,但颜色区间是一样的。处理后的图片可能会变成:
b=[[B,C,B,B,A,A],
[B,B,C,B,A,A],
[B,C,D,B,A,A],
[B,B,B,A,A,E],
[B,B,A,A,E,E],
[B,B,A,A,E,E]]
而连接区域的表格将是:
Label A B C D E
Color 1 2 1 3 1
Size 12 15 3 1 5
假设q=4。区域A、B和E的像素数量超过了q,而区域C和D的像素数量少于q。因此,A、B和E的像素被归类为连贯的,而C和D的像素被归类为不连贯的。这个图片的CCV(连接区域值)将是:
Color : 1 2 3
coherent: 17 15 0
incoherent: 3 0 1
一个特定的颜色区间可能只包含连贯的像素(就像2),只包含不连贯的像素(就像3),或者是连贯和不连贯像素的混合(就像1)。如果我们假设只有3种可能的颜色区间,CCV也可以写成<(17; 3) ; (15; 0) ; (0; 1)>,表示三种颜色。
请大家帮我找一个算法来寻找连接的区域。
我已经实现了迭代深度优先搜索(dfs)和递归深度优先搜索,但这两种方法似乎都不太高效,计算一张图片的连接区域大约需要30分钟。有没有人能帮我找到更好的方法?我快要没时间了,得提交我的项目。我把我的代码贴在下面:
图片大小:384*256
使用递归dfs的代码:
import cv2
import sys
from PIL import Image
import ImageFilter
import numpy
import PIL.Image
from numpy import array
stack=[]
z=0
sys.setrecursionlimit(9000000)
def main():
imageFile='C:\Users\Abhi\Desktop\cbir-p\New folder\gray_image.jpg'
size = Image.open(imageFile).size
print size
im=Image.open(imageFile)
inimgli=[]
for x in range(size[0]):
inimgli.append([])
for y in range(size[1]):
inten=im.getpixel((x,y))
inimgli[x].append(inten)
for item in inimgli:
item.insert(0,0)
item.append(0)
inimgli.insert(0,[0]*len(inimgli[0]))
inimgli.append([0]*len(inimgli[0]))
blurimg=[]
for i in range(1,len(inimgli)-1):
blurimg.append([])
for j in range(1,len(inimgli[0])-1):
blurimg[i-1].append((inimgli[i-1][j-1]+inimgli[i-1][j]+inimgli[i-1][j+1]+inimgli[i][j-1]+inimgli[i][j]+inimgli[i][j+1]+inimgli[i+1][j-1]+inimgli[i+1][j]+inimgli[i+1][j+1])/9)
#print blurimg
displi=numpy.array(blurimg).T
im1 = Image.fromarray(displi)
im1.show()
#i1.save('gray.png')
descretize(blurimg)
def descretize(rblurimg):
count=-1
desc={}
for i in range(64):
descli=[]
for t in range(4):
count=count+1
descli.append(count)
desc[i]=descli
del descli
#print len(rblurimg),len(rblurimg[0])
#print desc
drblur=[]
for x in range(len(rblurimg)):
drblur.append([])
for y in range(len(rblurimg[0])):
for item in desc:
if rblurimg[x][y] in desc[item]:
drblur[x].append(item)
#displi1=numpy.array(drblur).T
#im1 = Image.fromarray(displi1)
#im1.show()
#im1.save('xyz.tif')
#print drblur
connected(drblur)
def connected(rdrblur):
table={}
#print len(rdrblur),len(rdrblur[0])
for item in rdrblur:
item.insert(0,0)
item.append(0)
#print len(rdrblur),len(rdrblur[0])
rdrblur.insert(0,[0]*len(rdrblur[0]))
rdrblur.append([0]*len(rdrblur[0]))
copy=[]
for item in rdrblur:
copy.append(item[:])
global z
count=0
for i in range(1,len(rdrblur)-1):
for j in range(1,len(rdrblur[0])-1):
if (i,j) not in stack:
if rdrblur[i][j]==copy[i][j]:
z=0
times=dfs(i,j,str(count),rdrblur,copy)
table[count]=(rdrblur[i][j],times+1)
count=count+1
#z=0
#times=dfs(1,255,str(count),rdrblur,copy)
#print times
#print stack
stack1=[]
#copy.pop()
#copy.pop(0)
#print c
#print table
for item in table.values():
stack1.append(item)
#print stack1
table2={}
for v in range(64):
table2[v]={'coherent':0,'incoherent':0}
#for item in stack1:
# if item[0] not in table2.keys():
# table2[item[0]]={'coherent':0,'incoherent':0}
for item in stack1:
if item[1]>300:
table2[item[0]]['coherent']=table2[item[0]]['coherent']+item[1]
else:
table2[item[0]]['incoherent']=table2[item[0]]['incoherent']+item[1]
print table2
#return table2
def dfs(x,y,co,b,c):
dx = [-1,-1,-1,0,0,1,1,1]
dy = [-1,0,1,-1,1,-1,0,1]
global z
#print x,y,co
c[x][y]=co
stack.append((x,y))
#print dx ,dy
for i in range(8):
nx = x+(dx[i])
ny = y+(dy[i])
#print nx,ny
if b[x][y] == c[nx][ny]:
dfs(nx,ny,co,b,c)
z=z+1
return z
if __name__ == '__main__':
main()
迭代dfs:
def main():
imageFile='C:\Users\Abhi\Desktop\cbir-p\New folder\gray_image.jpg'
size = Image.open(imageFile).size
print size
im=Image.open(imageFile)
inimgli=[]
for x in range(size[0]):
inimgli.append([])
for y in range(size[1]):
inten=im.getpixel((x,y))
inimgli[x].append(inten)
for item in inimgli:
item.insert(0,0)
item.append(0)
inimgli.insert(0,[0]*len(inimgli[0]))
inimgli.append([0]*len(inimgli[0]))
blurimg=[]
for i in range(1,len(inimgli)-1):
blurimg.append([])
for j in range(1,len(inimgli[0])-1):
blurimg[i-1].append((inimgli[i-1][j-1]+inimgli[i-1][j]+inimgli[i-1][j+1]+inimgli[i][j-1]+inimgli[i][j]+inimgli[i][j+1]+inimgli[i+1][j-1]+inimgli[i+1][j]+inimgli[i+1][j+1])/9)
#print blurimg
#displi=numpy.array(blurimg).T
#im1 = Image.fromarray(displi)
#im1.show()
#i1.save('gray.png')
descretize(blurimg)
def descretize(rblurimg):
count=-1
desc={}
for i in range(64):
descli=[]
for t in range(4):
count=count+1
descli.append(count)
desc[i]=descli
del descli
#print len(rblurimg),len(rblurimg[0])
#print desc
drblur=[]
for x in range(len(rblurimg)):
drblur.append([])
for y in range(len(rblurimg[0])):
for item in desc:
if rblurimg[x][y] in desc[item]:
drblur[x].append(item)
#displi1=numpy.array(drblur).T
#im1 = Image.fromarray(displi1)
#im1.show()
#im1.save('xyz.tif')
#print drblur
connected(drblur)
def connected(rdrblur):
for item in rdrblur:
item.insert(0,0)
item.append(0)
#print len(rdrblur),len(rdrblur[0])
rdrblur.insert(0,[0]*len(rdrblur[0]))
rdrblur.append([0]*len(rdrblur[0]))
#print len(rdrblur),len(rdrblur[0])
copy=[]
for item in rdrblur:
copy.append(item[:])
count=0
#temp=0
#print len(alpha)
for i in range(1,len(rdrblur)-1):
for j in range(1,len(rdrblur[0])-1):
if (i,j) not in visited:
dfs(i,j,count,rdrblur,copy)
count=count+1
print "success"
def dfs(x,y,co,b,c):
global z
#print x,y,co
stack=[]
c[x][y]=str(co)
visited.append((x,y))
stack.append((x,y))
while len(stack) != 0:
exstack=find_neighbors(stack.pop(),co,b,c)
stack.extend(exstack)
#print visited
#print stack
#print len(visited)
#print c
'''while (len(stack)!=0):
(x1,y1)=stack.pop()
exstack=find_neighbors(x1,y1)
stack.extend(exstack)'''
def find_neighbors((x2,y2),cin,b,c):
#print x2,y2
neighborli=[]
for i in range(8):
x=x2+(dx[i])
y=y2+(dy[i])
if (x,y) not in visited:
if b[x2][y2]==b[x][y]:
visited.append((x,y))
c[x][y]=str(cin)
neighborli.append((x,y))
return neighborli
if __name__ == '__main__':
main()
3 个回答
深度优先搜索(DFS)是一种不错的算法,但它的递归版本在空间使用上不太高效,而非递归的版本又比较复杂。因此,我建议使用连通组件标记算法。这种算法使用了一种叫做不相交集合的数据结构,通过两次处理来以非递归的方式在线性时间内找到解决方案。
注意:可以使用图像处理库来实现,因为它们有并行的快速实现。
这是我之前回答的另一个帖子,内容和这个问题完全一样,里面有一个简单使用深度优先搜索(DFS)的示例代码。
修改一下DFS函数:添加一个参数 current_color
= {0,1,2},这样你就可以决定从这个节点是否可以去到另一个节点了。(如果相邻的节点和 current_color
颜色相同,并且还没有被访问过,就递归地访问那个节点)