如何在我的机器上安装numpy/core/numeric.py文件;我想要isclose()函数
我好像漏掉了什么基本的东西。
在GitHub上,似乎有一些额外的功能,特别是isclose(),可以在这里找到,但我安装的版本里没有这个功能。
我做了以下操作:
$ git clone git://github.com/numpy/numpy.git numpy
但是好像没有效果。
我还通过Synaptic Package Manager检查了更新,但也没有解决问题。我到底漏掉了什么?我该如何获得“最新”的版本呢?
我在Ubuntu 12.10上运行的是python 2.7.3。
2 个回答
1
要安装那个版本的numpy,你需要先进入你刚刚克隆下来的 numpy/
目录。
然后运行下面的命令:
python setup.py install
这样就可以了。
4
你提到的代码是Joe Kington对numpy这个包的一个修改版本。
你发的git clone
命令是用来把这个修改版本的源代码下载到你自己的电脑上。下载后,你还需要编译numpy并安装它,才能使用这个版本的numpy。
获取isclose
这个功能最简单的方法就是把代码复制到一个文件里,然后导入它:
utils_num.py
import numpy as np
def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
"""
https://github.com/joferkington/numpy/blob/3a85c0a9af64b0296b9a4c97f43f2f209c849077/numpy/core/numeric.py
Returns a boolean array where two arrays are element-wise equal within a
tolerance.
The tolerance values are positive, typically very small numbers. The
relative difference (`rtol` * abs(`b`)) and the absolute difference
`atol` are added together to compare against the absolute difference
between `a` and `b`.
Parameters
----------
a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes).
atol : float
The absolute tolerance parameter (see Notes).
equal_nan : bool
Whether to compare NaN's as equal. If True, NaN's in `a` will be
considered equal to NaN's in `b` in the output array.
Returns
-------
y : array_like
Returns a boolean array of where `a` and `b` are equal within the
given tolerance. If both `a` and `b` are scalars, returns a single
boolean value.
See Also
--------
allclose
Notes
-----
For finite values, isclose uses the following equation to test whether
two floating point values are equivalent.
absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
The above equation is not symmetric in `a` and `b`, so that
`isclose(a, b)` might be different from `isclose(b, a)` in
some rare cases.
Examples
--------
>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
array([True, True])
"""
def within_tol(x, y, atol, rtol):
result = np.less_equal(abs(x - y), atol + rtol * abs(y))
if np.isscalar(a) and np.isscalar(b):
result = result[0]
return result
x = np.array(a, copy=False, ndmin=1)
y = np.array(b, copy=False, ndmin=1)
xfin = np.isfinite(x)
yfin = np.isfinite(y)
if np.all(xfin) and np.all(yfin):
return within_tol(x, y, atol, rtol)
else:
# Avoid subtraction with infinite/nan values...
cond = np.zeros(broadcast(x, y).shape, dtype=bool)
mask = xfin & yfin
cond[mask] = within_tol(x[mask], y[mask], atol, rtol)
# Check for equality of infinite values...
cond[~mask] = (x[~mask] == y[~mask])
if equal_nan:
# Make NaN == NaN
cond[isnan(x) & isnan(y)] = True
return cond
test.py:
import utils_num as UN
print(UN.isclose([1e10,1e-7], [1.00001e10,1e-8]))
这样就能得到
array([ True, False], dtype=bool)