python optimize.leastsq:将圆拟合到3D点集合
我正在尝试使用圆拟合代码来处理3D数据集。我对代码进行了修改,主要是在需要的地方添加了z坐标。我的修改在一组点上运行得很好,但在另一组点上效果不佳。请看看代码,看看是否有错误。
import trig_items
import numpy as np
from trig_items import *
from numpy import *
from matplotlib import pyplot as p
from scipy import optimize
# Coordinates of the 3D points
##x = r_[36, 36, 19, 18, 33, 26]
##y = r_[14, 10, 28, 31, 18, 26]
##z = r_[0, 1, 2, 3, 4, 5]
x = r_[ 2144.18908574, 2144.26880854, 2144.05552972, 2143.90303742, 2143.62520676,
2143.43628579, 2143.14005775, 2142.79919654, 2142.51436023, 2142.11240866,
2141.68564346, 2141.29333828, 2140.92596405, 2140.3475612, 2139.90848046,
2139.24661021, 2138.67384709, 2138.03313547, 2137.40301734, 2137.40908256,
2137.06611224, 2136.50943781, 2136.0553113, 2135.50313189, 2135.07049922,
2134.62098139, 2134.10459535, 2133.50838433, 2130.6600465, 2130.03537342,
2130.04047644, 2128.83522468, 2127.79827542, 2126.43513385, 2125.36700593,
2124.00350543, 2122.68564431, 2121.20709478, 2119.79047011, 2118.38417647,
2116.90063343, 2115.52685778, 2113.82246629, 2112.21159431, 2110.63180117,
2109.00713198, 2108.94434529, 2106.82777156, 2100.62343757, 2098.5090226,
2096.28787738, 2093.91550703, 2091.66075061, 2089.15316429, 2086.69753869,
2084.3002414, 2081.87590579, 2079.19141866, 2076.5394574, 2073.89128676,
2071.18786213]
y = r_[ 725.74913818, 724.43874065, 723.15226506, 720.45950581, 717.77827954,
715.07048092, 712.39633862, 709.73267688, 707.06039438, 704.43405908,
701.80074596, 699.15371526, 696.5309022, 693.96109921, 691.35585501,
688.83496327, 686.32148661, 683.80286662, 681.30705568, 681.30530975,
679.66483676, 678.01922321, 676.32721779, 674.6667554, 672.9658024,
671.23686095, 669.52021535, 667.84999077, 659.19757984, 657.46179949,
657.45700508, 654.46901086, 651.38177517, 648.41739432, 645.32356976,
642.39034578, 639.42628453, 636.51107198, 633.57732055, 630.63825133,
627.75308356, 624.80162215, 622.01980232, 619.18814892, 616.37688894,
613.57400131, 613.61535723, 610.4724493, 600.98277781, 597.84782844,
594.75983001, 591.77946964, 588.74874068, 585.84525834, 582.92311166,
579.99564481, 577.06666417, 574.30782762, 571.54115037, 568.79760614,
566.08551098]
z = r_[ 339.77146775, 339.60021095, 339.47645894, 339.47130963, 339.37216218,
339.4126132, 339.67942046, 339.40917728, 339.39500353, 339.15041461,
339.38959195, 339.3358209, 339.47764895, 339.17854867, 339.14624071,
339.16403926, 339.02308811, 339.27011082, 338.97684183, 338.95087698,
338.97321177, 339.02175448, 339.02543922, 338.88725411, 339.06942374,
339.0557553, 339.04414618, 338.89234303, 338.95572249, 339.00880416,
339.00413073, 338.91080374, 338.98214758, 339.01135789, 338.96393537,
338.73446188, 338.62784913, 338.72443217, 338.74880562, 338.69090173,
338.50765186, 338.49056867, 338.57353355, 338.6196255, 338.43754399,
338.27218569, 338.10587265, 338.43880881, 338.28962141, 338.14338705,
338.25784154, 338.49792568, 338.15572139, 338.52967693, 338.4594245,
338.1511823, 338.03711207, 338.19144663, 338.22022045, 338.29032321,
337.8623197 ]
# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)
### Basic usage of optimize.leastsq
def calc_R(xc, yc, zc):
""" calculate the distance of each 3D points from the center (xc, yc, zc) """
return sqrt((x - xc) ** 2 + (y - yc) ** 2 + (z - zc) ** 2)
def func(c):
""" calculate the algebraic distance between the 3D points and the mean circle centered at c=(xc, yc, zc) """
Ri = calc_R(*c)
return Ri - Ri.mean()
center_estimate = xm, ym, zm
center, ier = optimize.leastsq(func, center_estimate)
##print center
xc, yc, zc = center
Ri = calc_R(xc, yc, zc)
R = Ri.mean()
residu = sum((Ri - R)**2)
print 'R =', R
对于第一组x, y, z
(在代码中有注释),它运行得很好,输出结果是R = 39.0097846735
。但是如果我用第二组点(没有注释的)运行代码,得到的半径是R = 108576.859834
,这几乎是一条直线。我把最后的结果画出来了。
蓝色的点是给定的数据集,红色的点是得到的半径R = 108576.859834
的弧线。很明显,给定的数据集的半径要比结果小得多。
这里还有另一组点。
很明显,最小二乘法的结果不正确。
请帮我解决这个问题。
更新
这是我的解决方案:
### fit 3D arc into a set of 3D points ###
### output is the centre and the radius of the arc ###
def fitArc3d(arr, eps = 0.0001):
# Coordinates of the 3D points
x = numpy.array([arr[k][0] for k in range(len(arr))])
y = numpy.array([arr[k][4] for k in range(len(arr))])
z = numpy.array([arr[k][5] for k in range(len(arr))])
# coordinates of the barycenter
xm = mean(x)
ym = mean(y)
zm = mean(z)
### gradient descent minimisation method ###
pnts = [[x[k], y[k], z[k]] for k in range(len(x))]
meanP = Point(xm, ym, zm) # mean point
Ri = [Point(*meanP).distance(Point(*pnts[k])) for k in range(len(pnts))] # radii to the points
Rm = math.fsum(Ri) / len(Ri) # mean radius
dR = Rm + 10 # difference between mean radii
alpha = 0.1
c = meanP
cArr = []
while dR > eps:
cArr.append(c)
Jx = math.fsum([2 * (x[k] - c[0]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
Jy = math.fsum([2 * (y[k] - c[1]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
Jz = math.fsum([2 * (z[k] - c[2]) * (Ri[k] - Rm) / Ri[k] for k in range(len(Ri))])
gradJ = [Jx, Jy, Jz] # find gradient
c = [c[k] + alpha * gradJ[k] for k in range(len(c)) if len(c) == len(gradJ)] # find new centre point
Ri = [Point(*c).distance(Point(*pnts[k])) for k in range(len(pnts))] # calculate new radii
RmOld = Rm
Rm = math.fsum(Ri) / len(Ri) # calculate new mean radius
dR = abs(Rm - RmOld) # new difference between mean radii
return Point(*c), Rm
代码不是很优化(我没有时间去调整它),但它能工作。
2 个回答
感觉你在第一版代码中漏掉了一些限制条件。这个实现可以理解为把一个球体放到三维点上。所以第二组数据的半径几乎呈直线的原因就是这样。可以想象成你给它一个小圆圈,放在一个大球体上。
我想问题出在数据和相应的算法上。最小二乘法在产生局部抛物线最小值时效果很好,这样简单的梯度方法就能大致朝着最小值的方向前进。不幸的是,这并不一定适用于你的数据。你可以通过固定一些粗略的 xc
和 yc
的估计值,然后绘制平方残差和 zc
以及 R
的关系图来检查这一点。我得到的是一个像回旋镖形状的最小值。根据你选择的起始参数,你可能会走向远离真实最小值的某个分支。一旦进入谷底,这个地方可能非常平坦,以至于你超出了最大迭代次数,或者得到的结果在算法的容忍范围内。像往常一样,起始参数越好,结果也会越好。不幸的是,你只有一个小的圆弧,所以很难得到更好的结果。我不是Python方面的专家,但我认为 leastsq
允许你尝试雅可比和梯度方法。也试着调整一下容忍度吧。
简而言之:我觉得代码基本上是好的,但你的数据有点问题,你需要根据这种数据调整代码。
在二维中有一个来自Karimäki的非迭代解决方案,也许你可以把这个方法改编成三维的。你也可以看看这个。你肯定能找到更多相关的文献。
我刚用单纯形算法检查了数据。正如我所说,最小值的表现并不好。这里有一些残差函数的切片。只有在xy平面上,你才能看到一些合理的表现。zr平面和xr平面的特性让寻找过程变得非常困难。
所以一开始,单纯形算法找到了几个几乎稳定的解。你可以在下面的图中看到它们作为平坦的台阶(蓝色x,紫色y,黄色z,绿色R)。最后,算法必须沿着几乎平坦但非常拉长的谷底走,导致z和R的最终转换。不过,我预计在容忍度不足的情况下,会有很多看起来像解的区域。使用标准容忍度10^-5,算法在大约350次迭代后停止。我不得不把它设置为10^-10才能得到这个解,也就是[1899.32, 741.874, 298.696, 248.956],看起来还不错。
更新
正如之前提到的,解的结果取决于工作精度和要求的准确度。所以你手动制作的梯度方法可能效果更好,因为这些值与内置的最小二乘拟合不同。不过,这是我制作的一个两步拟合版本。首先,我对数据拟合一个平面。在下一步中,我在这个平面内拟合一个圆。这两个步骤都使用最小二乘法。这次有效,因为每一步都避免了形状不好的最小值。(当然,当弧段变小且数据几乎在一条直线上时,平面拟合会遇到问题。但这对所有算法来说都是如此)
from math import *
from matplotlib import pyplot as plt
from scipy import optimize
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import pprint as pp
dataTupel=zip(xs,ys,zs) #your data from above
# Fitting a plane first
# let the affine plane be defined by two vectors,
# the zero point P0 and the plane normal n0
# a point p is member of the plane if (p-p0).n0 = 0
def distanceToPlane(p0,n0,p):
return np.dot(np.array(n0),np.array(p)-np.array(p0))
def residualsPlane(parameters,dataPoint):
px,py,pz,theta,phi = parameters
nx,ny,nz =sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)
distances = [distanceToPlane([px,py,pz],[nx,ny,nz],[x,y,z]) for x,y,z in dataPoint]
return distances
estimate = [1900, 700, 335,0,0] # px,py,pz and zeta, phi
#you may automize this by using the center of mass data
# note that the normal vector is given in polar coordinates
bestFitValues, ier = optimize.leastsq(residualsPlane, estimate, args=(dataTupel))
xF,yF,zF,tF,pF = bestFitValues
point = [xF,yF,zF]
normal = [sin(tF)*cos(pF),sin(tF)*sin(pF),cos(tF)]
# Fitting a circle inside the plane
#creating two inplane vectors
sArr=np.cross(np.array([1,0,0]),np.array(normal))#assuming that normal not parallel x!
sArr=sArr/np.linalg.norm(sArr)
rArr=np.cross(sArr,np.array(normal))
rArr=rArr/np.linalg.norm(rArr)#should be normalized already, but anyhow
def residualsCircle(parameters,dataPoint):
r,s,Ri = parameters
planePointArr = s*sArr + r*rArr + np.array(point)
distance = [ np.linalg.norm( planePointArr-np.array([x,y,z])) for x,y,z in dataPoint]
res = [(Ri-dist) for dist in distance]
return res
estimateCircle = [0, 0, 335] # px,py,pz and zeta, phi
bestCircleFitValues, ier = optimize.leastsq(residualsCircle, estimateCircle,args=(dataTupel))
rF,sF,RiF = bestCircleFitValues
print bestCircleFitValues
# Synthetic Data
centerPointArr=sF*sArr + rF*rArr + np.array(point)
synthetic=[list(centerPointArr+ RiF*cos(phi)*rArr+RiF*sin(phi)*sArr) for phi in np.linspace(0, 2*pi,50)]
[cxTupel,cyTupel,czTupel]=[ x for x in zip(*synthetic)]
### Plotting
d = -np.dot(np.array(point),np.array(normal))# dot product
# create x,y mesh
xx, yy = np.meshgrid(np.linspace(2000,2200,10), np.linspace(540,740,10))
# calculate corresponding z
# Note: does not work if normal vector is without z-component
z = (-normal[0]*xx - normal[1]*yy - d)/normal[2]
# plot the surface, data, and synthetic circle
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.scatter(xs, ys, zs, c='b', marker='o')
ax.plot_wireframe(xx,yy,z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
bx = fig.add_subplot(212, projection='3d')
bx.scatter(xs, ys, zs, c='b', marker='o')
bx.scatter(cxTupel,cyTupel,czTupel, c='r', marker='o')
bx.set_xlabel('X Label')
bx.set_ylabel('Y Label')
bx.set_zlabel('Z Label')
plt.show()
这给出的半径是245。这接近另一种方法给出的249。所以在误差范围内,我得到了相同的结果。
绘制的结果看起来合理。希望这能帮到你。