有人熟悉穆勒算法吗?在编程上遇到问题。
我在使用穆勒算法的代码时遇到了一些问题,这个课程只涉及基础的Python编程。我的程序还没有处理像输出中那样的虚数,而且我的停止条件也没有正常工作,但现在我最关心的是如何正确打印下面输出中的数字。我把输出作为代码贴上来,因为我刚来这个网站,系统一直提示我“代码格式不正确”,所以我有点困惑。
非常感谢任何帮助!
When f=(x-5)*(x-4)*(x+7)
and initial guesses are 1,3,and -10
and tolerance = 0.000001
The output of this code should look like this:
The initial estimates to the root are:
f( 1 )= 96
f( 3 )= 20
f( -10 )= -630
0 : estimate to the root is f( 1 )= 96
1 : estimate to the root is f( (-4.102012878968893+0j) )= (213.71097514696675+0j)
2 : estimate to the root is f( (3.463202253458595+0j) )= (8.63161417086553+0j)
3 : estimate to the root is f( (3.6797449479714586+0j) )= (4.515592141362759+0j)
4 : estimate to the root is f( (3.9234514667540585+0j) )= (0.9001820953746444+0j)
5 : estimate to the root is f( (3.9988300605239253+0j) )= (0.012883020219233893+0j)
6 : estimate to the root is f( (3.9999973985379675+0j) )= (2.861615003307639e-05+0j)
The approximation to the root is f( (3.999999999978821+0j) ) = (2.329696435810382e-
10+0j)
这是我的实际代码:
import string
from math import *
from cmath import *
def evalFunction(f,x):
x=eval(f)
return x
def main():
f= input("Input the function: ")
p0=eval(input("Input the first estimate to the root of the function: "))
p1=eval(input("Input the second estimate to the root of the function: "))
p2=eval(input("Input the third estimate to the root of the function: "))
t=eval(input("Enter the tolerance "))
fp0=evalFunction(f,p0)
fp1=evalFunction(f,p1)
fp2=evalFunction(f,p2)
print("The initial estimates to the root are:")
print("f(",p0,")=",fp0)
print("f(",p1,")=",fp1)
print("f(",p2,")=",fp2)
count=0
print(count,": estimate to the root is f(",p0,")=",fp0)
fp3=1
while count<30:
while (abs(fp3))>=t:
fp0=evalFunction(f,p0)
fp1=evalFunction(f,p1)
fp2=evalFunction(f,p2)
#Computes a,b,c
o=fp1-fp2
n=fp0-fp2
s=p1-p2
r=p0-p2
denom=r*s*(p0-p1)
a=(s*n-r*o)/denom
b=((r**2)*o-(s**2)*n)/denom
c=fp2
print()
count=count+1
#Computes the roots
x1= (-2*c)/(b+(b**2-4*a*c)**.5)
x2=(-2*c)/(b-(b**2-4*a*c)**.5)
if b>0:
p3= p2+x1
fp3=evalFunction(f,p3)
print(count,": estimate to the root is f(",p3,")=",fp3)
print()
else:
p3= p2+x2
fp3=evalFunction(f,p3)
print(count,": estimate to the root is f(",p3,")=",fp3)
print()
p2=p3
main()
1 个回答
不太清楚你程序的哪个部分出现了问题,可能是因为当满足容差条件后,代码就卡住了。因为在内层循环中,count
是在不断增加的,而一旦满足容差条件,内层循环就不再执行了,这样外层循环 while count<30:
就会一直运行下去。
不过,把 while count<30:
和 while (abs(fp3))>=t:
改成 while count<30 and (abs(fp3))>=t:
就能解决这个问题。最后还有一条说明,关于 p0
和 p1
在循环中没有更新的问题,这可能会影响收敛速度。
关于输出格式,可以看看下面代码中使用的 format
函数。注意,在这段代码中,我在大多数等号周围加了空格,以便更容易阅读,并且通过命令行输入参数。没有在命令行输入的参数仍然会被提示输入。我不确定在 Windows 系统上命令行参数是否以相同的方式被识别。
另外,你可以用不同或相同的小数位数来打印数字的实部和虚部;例如,c=3-5j; d=4.4+5.5j; print ('d: {.real:7.2f} {.imag:+.3f}j c: {:9.4f}'.format(d,d, c))
会输出 d: 4.40 +5.500j c: 3.0000-5.0000j
。想了解更多关于格式化的信息,可以查看 格式说明小语言的文档。
使用下面修改后的程序,在我的 Linux 系统上运行 ./mullermethod.py '(x-5)*(x-4)*(x+7)' 1 3 -10 0.000001
(和你在提示中输入的参数一样)会打印出
The initial estimates to a root are:
f( 1.0 ) = 96.0
f( 3.0 ) = 20.0
f( -10.0 ) = -630.0
0: estimate to a root is f( 1.00000000000000) = 96.00000000000000
1: estimate to a root is f( -4.10201287896889) = 213.71097514696675
2: estimate to a root is f( 3.46320225345860) = 8.63161417086548
3: estimate to a root is f( 3.90342357843416) = 1.15470992046251
4: estimate to a root is f( 3.98002449809592) = 0.22371275706982
5: estimate to a root is f( 3.99575149263503) = 0.04691400247817
6: estimate to a root is f( 3.99909106270745) = 0.01000657113716
7: estimate to a root is f( 3.99980529453210) = 0.00214213924168
8: estimate to a root is f( 3.99995828046651) = 0.00045893227349
9: estimate to a root is f( 3.99999106024078) = 0.00009833815063
10: estimate to a root is f( 3.99999808434378) = 0.00002107225517
11: estimate to a root is f( 3.99999958950253) = 0.00000451547380
12: estimate to a root is f( 3.99999991203627) = 0.00000096760109
然后程序就退出了。
#!/usr/bin/env python3.2
from math import *
from cmath import *
def evalFunction(f,x):
return eval(f)
def main():
from sys import argv
f = argv[1] if len(argv)>1 else input("Input the function: ")
p0 = float(argv[2]) if len(argv)>2 else eval(input("Input the first estimate to a root of the function: "))
p1 = float(argv[3]) if len(argv)>3 else eval(input("Input the next estimate to a root of the function: "))
p2 = float(argv[4]) if len(argv)>4 else eval(input("Input the third estimate to a root of the function: "))
toler = float(argv[5]) if len(argv)>5 else eval(input("Enter the tolerance: "))
fp0 = evalFunction(f,p0)
fp1 = evalFunction(f,p1)
fp2 = evalFunction(f,p2)
print("The initial estimates to a root are:")
print("f(",p0,") = ",fp0)
print("f(",p1,") = ",fp1)
print("f(",p2,") = ",fp2)
count = 0
print ('{:2}: estimate to a root is f({:18.14f}) = {:18.14f}'.format(count,p0,fp0))
fp3 = 1e9
while count<30 and abs(fp3) >= toler:
fp0 = evalFunction(f,p0)
fp1 = evalFunction(f,p1)
fp2 = evalFunction(f,p2)
#Computes a,b,c
o = fp1-fp2
n = fp0-fp2
s = p1-p2
r = p0-p2
denom = r*s*(p0-p1)
a = (s*n-r*o)/denom
b = ((r**2)*o-(s**2)*n)/denom
c = fp2
count += 1
#Compute roots
x1 = (-2*c)/(b+(b**2-4*a*c)**.5)
x2 = (-2*c)/(b-(b**2-4*a*c)**.5)
if b>0:
p3 = p2+x1
else:
p3 = p2+x2
fp3=evalFunction(f,p3)
print ('{:2}: estimate to a root is f({:18.14f}) = {:18.14f}'.format(count,p3,fp3))
p2 = p3
main()
注意,我没有看到 p0
和 p1
在循环中发生变化(所以 fp0
和 fp1
也没有变化)。根据我从 维基百科 的印象,你应该在说 p2 = p3
的地方做类似 p0, p1, p2 = p1, p2, p3
的操作。此外,为了减少函数的计算次数,如果你把 p0, p1, p2 = p1, p2, p3
改成 p0, p1, p2, fp0, fp1, fp2 = p1, p2, p3, fp1, fp2, fp3
,就可以删除循环中的 fp0
、fp1
和 fp2
的计算。
用 p0, p1, p2 = p1, p2, p3
替代 p2 = p3
后,可以在更少的迭代次数中找到更接近的结果(针对不同的根):
tini ~/sp/math > ./mullermethod.py '(x-5)*(x-4)*(x+7)' 1 3 -10 0.000001
The initial estimates to a root are:
f( 1.0 ) = 96.0
f( 3.0 ) = 20.0
f( -10.0 ) = -630.0
0: estimate to a root is f( 1.00000000000000) = 96.00000000000000
1: estimate to a root is f( -4.10201287896889) = 213.71097514696675
2: estimate to a root is f( -6.34710329529507) = 76.65637351948691
3: estimate to a root is f( -6.95941163108092) = 5.31984100233008
4: estimate to a root is f( -7.00059085626200) = -0.07800105634618
5: estimate to a root is f( -6.99999988135762) = 0.00001566079365
6: estimate to a root is f( -6.99999999999998) = 0.00000000000281