Pandas中的rbind版本

114 投票
6 回答
151039 浏览
提问于 2025-04-17 16:32

在R语言中,你可以通过使用rbind把两个数据框的列合并在一起,也就是把一个数据框的列放到另一个数据框的下面。在pandas中,想要做到同样的事情该怎么做呢?这看起来有点复杂。

使用append方法的结果很糟糕,里面有很多NaN(缺失值)和一些我不明白的东西。我只是想把两个看起来一模一样的数据框“rbind”在一起,像这样:

编辑:我之前创建数据框的方式有点傻,这导致了一些问题。实际上,append和rbind是一样的。请看下面的回答。

        0         1       2        3          4          5        6                    7
0   ADN.L  20130220   437.4   442.37   436.5000   441.9000  2775364  2013-02-20 18:47:42
1   ADM.L  20130220  1279.0  1300.00  1272.0000  1285.0000   967730  2013-02-20 18:47:42
2   AGK.L  20130220  1717.0  1749.00  1709.0000  1739.0000   834534  2013-02-20 18:47:43
3  AMEC.L  20130220  1030.0  1040.00  1024.0000  1035.0000  1972517  2013-02-20 18:47:43
4   AAL.L  20130220  1998.0  2014.50  1942.4999  1951.0000  3666033  2013-02-20 18:47:44
5  ANTO.L  20130220  1093.0  1097.00  1064.7899  1068.0000  2183931  2013-02-20 18:47:44
6   ARM.L  20130220   941.5   965.10   939.4250   951.5001  2994652  2013-02-20 18:47:45

但是我得到的结果却很糟糕,像这样:

        0         1        2        3          4         5        6                    7       0         1       2        3          4          5        6                    7
0     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADN.L  20130220   437.4   442.37   436.5000   441.9000  2775364  2013-02-20 18:47:42
1     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADM.L  20130220  1279.0  1300.00  1272.0000  1285.0000   967730  2013-02-20 18:47:42
2     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   AGK.L  20130220  1717.0  1749.00  1709.0000  1739.0000   834534  2013-02-20 18:47:43
3     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN  AMEC.L  20130220  1030.0  1040.00  1024.0000  1035.0000  1972517  2013-02-20 18:47:43
4     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   AAL.L  20130220  1998.0  2014.50  1942.4999  1951.0000  3666033  2013-02-20 18:47:44
5     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN  ANTO.L  20130220  1093.0  1097.00  1064.7899  1068.0000  2183931  2013-02-20 18:47:44
6     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ARM.L  20130220   941.5   965.10   939.4250   951.5001  2994652  2013-02-20 18:47:45
0     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADN.L  20130220   437.4   442.37   436.5000   441.9000  2775364  2013-02-20 18:47:42
1     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   ADM.L  20130220  1279.0  1300.00  1272.0000  1285.0000   967730  2013-02-20 18:47:42
2     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN   AGK.L  20130220  1717.0  1749.00  1709.0000  1739.0000   834534  2013-02-20 18:47:43
3     NaN       NaN      NaN      NaN        NaN       NaN      NaN                  NaN  

我真的不明白为什么会这样。我开始怀念R语言了 :(

6 个回答

35

[编辑] append()1.4.0 版本开始不再推荐使用 - 建议使用 concat() 来替代 - https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.append.html

这个方法对我有效:

import numpy as np
import pandas as pd

dates = np.asarray(pd.date_range('1/1/2000', periods=8))
df1 = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
df2 = df1.copy()
df = df1.append(df2)

结果是:

                   A         B         C         D
2000-01-01 -0.327208  0.552500  0.862529  0.493109
2000-01-02  1.039844 -2.141089 -0.781609  1.307600
2000-01-03 -0.462831  0.066505 -1.698346  1.123174
2000-01-04 -0.321971 -0.544599 -0.486099 -0.283791
2000-01-05  0.693749  0.544329 -1.606851  0.527733
2000-01-06 -2.461177 -0.339378 -0.236275  0.155569
2000-01-07 -0.597156  0.904511  0.369865  0.862504
2000-01-08 -0.958300 -0.583621 -2.068273  0.539434
2000-01-01 -0.327208  0.552500  0.862529  0.493109
2000-01-02  1.039844 -2.141089 -0.781609  1.307600
2000-01-03 -0.462831  0.066505 -1.698346  1.123174
2000-01-04 -0.321971 -0.544599 -0.486099 -0.283791
2000-01-05  0.693749  0.544329 -1.606851  0.527733
2000-01-06 -2.461177 -0.339378 -0.236275  0.155569
2000-01-07 -0.597156  0.904511  0.369865  0.862504
2000-01-08 -0.958300 -0.583621 -2.068273  0.539434

如果你还没有使用最新版本的 pandas,我强烈建议你升级。现在可以处理包含重复索引的 DataFrame 了。

71

pd.concat 这个函数在Python的Pandas库中,可以实现和R语言里的rbind一样的功能。

import pandas as pd
df1 = pd.DataFrame({'col1': [1,2], 'col2':[3,4]})
df2 = pd.DataFrame({'col1': [5,6], 'col2':[7,8]})
print(df1)
print(df2)
print(pd.concat([df1, df2]))

结果看起来会是这样的:

   col1  col2
0     1     3
1     2     4
   col1  col2
0     5     7
1     6     8
   col1  col2
0     1     3
1     2     4
0     5     7
1     6     8

如果你仔细阅读文档,它还会解释其他操作,比如cbind等等。

56

哦,这个问题跟我创建数据框的方式有关,而不是我如何把它们合并在一起。简单来说,如果你是通过一个循环来创建数据框,并且用的语句像这样:

Frame = Frame.append(pandas.DataFrame(data = SomeNewLineOfData))

你必须忽略索引

Frame = Frame.append(pandas.DataFrame(data = SomeNewLineOfData), ignore_index=True)

否则在后面合并数据的时候会遇到问题。

撰写回答