Python大数据集的双重释放错误

34 投票
2 回答
23752 浏览
提问于 2025-04-17 16:04

我有一个非常简单的Python脚本,但在处理大量数据时,运行时出现了以下错误:

*** glibc detected *** python: double free or corruption (out): 0x00002af5a00cc010 ***

我以前在C或C++中遇到过这种错误,通常是因为试图释放已经释放的内存。不过根据我对Python的理解(尤其是我写代码的方式),我真的不明白为什么会发生这种情况。

这是我的代码:

#!/usr/bin/python -tt                                                                                                                                                                                                                         

import sys, commands, string
import numpy as np
import scipy.io as io
from time import clock

W = io.loadmat(sys.argv[1])['W']
size = W.shape[0]
numlabels = int(sys.argv[2])
Q = np.zeros((size, numlabels), dtype=np.double)
P = np.zeros((size, numlabels), dtype=np.double)
Q += 1.0 / Q.shape[1]
nu = 0.001
mu = 0.01
start = clock()
mat = -nu + mu*(W*(np.log(Q)-1))
end = clock()
print >> sys.stderr, "Time taken to compute matrix: %.2f seconds"%(end-start)

有人可能会问,为什么要声明P和Q这两个numpy数组?我这样做只是为了反映实际情况(因为这段代码只是我实际工作的一部分,我需要一个P矩阵,所以提前声明了它)。

我有一台192GB的机器,所以我在一个非常大的SciPy稀疏矩阵上进行了测试(2.2百万乘以2.2百万,但非常稀疏,这不是问题所在)。主要的内存被Q、P和mat矩阵占用,因为它们都是2.2百万乘以2000的矩阵(大小 = 2.2百万,标签数量 = 2000)。峰值内存达到了131GB,这在内存中是可以容纳的。在计算mat矩阵时,我遇到了glibc错误,进程自动进入了休眠状态(S),而没有释放已经占用的131GB内存。

考虑到这个奇怪的(对于Python来说)错误(我并没有明确释放任何东西),以及在处理较小矩阵时(大约1.5百万乘以2000)一切正常,我真的不知道该从哪里开始调试。

作为起点,我在运行之前设置了“ulimit -s unlimited”,但没有效果。

任何关于numpy在处理大量数据时行为的帮助或见解都非常欢迎。

请注意,这并不是内存不足的错误——我有196GB的内存,而我的进程在达到大约131GB后会停留一段时间,然后才出现下面的错误。

更新:2013年2月16日(太平洋标准时间下午1:10):

根据建议,我用GDB运行了Python。有趣的是,在一次GDB运行中,我忘记将栈大小限制设置为“无限”,得到了以下输出:

*** glibc detected *** /usr/bin/python: munmap_chunk(): invalid pointer: 0x00007fe7508a9010 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x733b6)[0x7ffff6ec23b6]
/usr/lib64/python2.7/site-packages/numpy/core/multiarray.so(+0x4a496)[0x7ffff69fc496]
/usr/lib64/libpython2.7.so.1.0(PyEval_EvalFrameEx+0x4e67)[0x7ffff7af48c7]
/usr/lib64/libpython2.7.so.1.0(PyEval_EvalCodeEx+0x309)[0x7ffff7af6c49]
/usr/lib64/libpython2.7.so.1.0(PyEval_EvalCode+0x32)[0x7ffff7b25592]
/usr/lib64/libpython2.7.so.1.0(+0xfcc61)[0x7ffff7b33c61]
/usr/lib64/libpython2.7.so.1.0(PyRun_FileExFlags+0x84)[0x7ffff7b34074]
/usr/lib64/libpython2.7.so.1.0(PyRun_SimpleFileExFlags+0x189)[0x7ffff7b347c9]
/usr/lib64/libpython2.7.so.1.0(Py_Main+0x36c)[0x7ffff7b3e1bc]
/lib64/libc.so.6(__libc_start_main+0xfd)[0x7ffff6e6dbfd]
/usr/bin/python[0x4006e9]
======= Memory map: ========
00400000-00401000 r-xp 00000000 09:01 50336181                           /usr/bin/python2.7
00600000-00601000 r--p 00000000 09:01 50336181                           /usr/bin/python2.7
00601000-00602000 rw-p 00001000 09:01 50336181                           /usr/bin/python2.7
00602000-00e5f000 rw-p 00000000 00:00 0                                  [heap]
7fdf2584c000-7ffff0a66000 rw-p 00000000 00:00 0 
7ffff0a66000-7ffff0a6b000 r-xp 00000000 09:01 50333916                   /usr/lib64/python2.7/lib-dynload/mmap.so
7ffff0a6b000-7ffff0c6a000 ---p 00005000 09:01 50333916                   /usr/lib64/python2.7/lib-dynload/mmap.so
7ffff0c6a000-7ffff0c6b000 r--p 00004000 09:01 50333916                   /usr/lib64/python2.7/lib-dynload/mmap.so
7ffff0c6b000-7ffff0c6c000 rw-p 00005000 09:01 50333916                   /usr/lib64/python2.7/lib-dynload/mmap.so
7ffff0c6c000-7ffff0c77000 r-xp 00000000 00:12 54138483                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/streams.so
7ffff0c77000-7ffff0e76000 ---p 0000b000 00:12 54138483                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/streams.so
7ffff0e76000-7ffff0e77000 r--p 0000a000 00:12 54138483                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/streams.so
7ffff0e77000-7ffff0e78000 rw-p 0000b000 00:12 54138483                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/streams.so
7ffff0e78000-7ffff0e79000 rw-p 00000000 00:00 0 
7ffff0e79000-7ffff0e9b000 r-xp 00000000 00:12 54138481                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio5_utils.so
7ffff0e9b000-7ffff109a000 ---p 00022000 00:12 54138481                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio5_utils.so
7ffff109a000-7ffff109b000 r--p 00021000 00:12 54138481                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio5_utils.so
7ffff109b000-7ffff109f000 rw-p 00022000 00:12 54138481                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio5_utils.so
7ffff109f000-7ffff10a0000 rw-p 00000000 00:00 0 
7ffff10a0000-7ffff10a5000 r-xp 00000000 09:01 50333895                   /usr/lib64/python2.7/lib-dynload/zlib.so
7ffff10a5000-7ffff12a4000 ---p 00005000 09:01 50333895                   /usr/lib64/python2.7/lib-dynload/zlib.so
7ffff12a4000-7ffff12a5000 r--p 00004000 09:01 50333895                   /usr/lib64/python2.7/lib-dynload/zlib.so
7ffff12a5000-7ffff12a7000 rw-p 00005000 09:01 50333895                   /usr/lib64/python2.7/lib-dynload/zlib.so
7ffff12a7000-7ffff12ad000 r-xp 00000000 00:12 54138491                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio_utils.so
7ffff12ad000-7ffff14ac000 ---p 00006000 00:12 54138491                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio_utils.so
7ffff14ac000-7ffff14ad000 r--p 00005000 00:12 54138491                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio_utils.so
7ffff14ad000-7ffff14ae000 rw-p 00006000 00:12 54138491                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/io/matlab/mio_utils.so
7ffff14ae000-7ffff14b5000 r-xp 00000000 00:12 54138562                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_csgraph.so
7ffff14b5000-7ffff16b4000 ---p 00007000 00:12 54138562                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_csgraph.so
7ffff16b4000-7ffff16b5000 r--p 00006000 00:12 54138562                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_csgraph.so
7ffff16b5000-7ffff16b6000 rw-p 00007000 00:12 54138562                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_csgraph.so
7ffff16b6000-7ffff17c2000 r-xp 00000000 00:12 54138558                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_bsr.so
7ffff17c2000-7ffff19c2000 ---p 0010c000 00:12 54138558                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_bsr.so
7ffff19c2000-7ffff19c3000 r--p 0010c000 00:12 54138558                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_bsr.so
7ffff19c3000-7ffff19c6000 rw-p 0010d000 00:12 54138558                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_bsr.so
7ffff19c6000-7ffff19d5000 r-xp 00000000 00:12 54138561                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_dia.so
7ffff19d5000-7ffff1bd4000 ---p 0000f000 00:12 54138561                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_dia.so
7ffff1bd4000-7ffff1bd5000 r--p 0000e000 00:12 54138561                   /home/avneesh/.local/lib/python2.7/site-packages/scipy/sparse/sparsetools/_dia.so
Program received signal SIGABRT, Aborted.
0x00007ffff6e81ab5 in raise () from /lib64/libc.so.6
(gdb) bt
#0  0x00007ffff6e81ab5 in raise () from /lib64/libc.so.6
#1  0x00007ffff6e82fb6 in abort () from /lib64/libc.so.6
#2  0x00007ffff6ebcdd3 in __libc_message () from /lib64/libc.so.6
#3  0x00007ffff6ec23b6 in malloc_printerr () from /lib64/libc.so.6
#4  0x00007ffff69fc496 in ?? () from /usr/lib64/python2.7/site-packages/numpy/core/multiarray.so
#5  0x00007ffff7af48c7 in PyEval_EvalFrameEx () from /usr/lib64/libpython2.7.so.1.0
#6  0x00007ffff7af6c49 in PyEval_EvalCodeEx () from /usr/lib64/libpython2.7.so.1.0
#7  0x00007ffff7b25592 in PyEval_EvalCode () from /usr/lib64/libpython2.7.so.1.0
#8  0x00007ffff7b33c61 in ?? () from /usr/lib64/libpython2.7.so.1.0
#9  0x00007ffff7b34074 in PyRun_FileExFlags () from /usr/lib64/libpython2.7.so.1.0
#10 0x00007ffff7b347c9 in PyRun_SimpleFileExFlags () from /usr/lib64/libpython2.7.so.1.0
#11 0x00007ffff7b3e1bc in Py_Main () from /usr/lib64/libpython2.7.so.1.0
#12 0x00007ffff6e6dbfd in __libc_start_main () from /lib64/libc.so.6
#13 0x00000000004006e9 in _start ()

当我将栈大小限制设置为“无限”时,我得到了以下结果:

*** glibc detected *** /usr/bin/python: double free or corruption (out): 0x00002abb2732c010 ***
^X^C
Program received signal SIGINT, Interrupt.
0x00002aaaab9d08fe in __lll_lock_wait_private () from /lib64/libc.so.6
(gdb) bt
#0  0x00002aaaab9d08fe in __lll_lock_wait_private () from /lib64/libc.so.6
#1  0x00002aaaab969f2e in _L_lock_9927 () from /lib64/libc.so.6
#2  0x00002aaaab9682d1 in free () from /lib64/libc.so.6
#3  0x00002aaaaaabbfe2 in _dl_scope_free () from /lib64/ld-linux-x86-64.so.2
#4  0x00002aaaaaab70a4 in _dl_map_object_deps () from /lib64/ld-linux-x86-64.so.2
#5  0x00002aaaaaabcaa0 in dl_open_worker () from /lib64/ld-linux-x86-64.so.2
#6  0x00002aaaaaab85f6 in _dl_catch_error () from /lib64/ld-linux-x86-64.so.2
#7  0x00002aaaaaabc5da in _dl_open () from /lib64/ld-linux-x86-64.so.2
#8  0x00002aaaab9fb530 in do_dlopen () from /lib64/libc.so.6
#9  0x00002aaaaaab85f6 in _dl_catch_error () from /lib64/ld-linux-x86-64.so.2
#10 0x00002aaaab9fb5cf in dlerror_run () from /lib64/libc.so.6
#11 0x00002aaaab9fb637 in __libc_dlopen_mode () from /lib64/libc.so.6
#12 0x00002aaaab9d60c5 in init () from /lib64/libc.so.6
#13 0x00002aaaab080933 in pthread_once () from /lib64/libpthread.so.0
#14 0x00002aaaab9d61bc in backtrace () from /lib64/libc.so.6
#15 0x00002aaaab95dde7 in __libc_message () from /lib64/libc.so.6
#16 0x00002aaaab9633b6 in malloc_printerr () from /lib64/libc.so.6
#17 0x00002aaaab9682dc in free () from /lib64/libc.so.6
#18 0x00002aaaabef1496 in ?? () from /usr/lib64/python2.7/site-packages/numpy/core/multiarray.so
#19 0x00002aaaaad888c7 in PyEval_EvalFrameEx () from /usr/lib64/libpython2.7.so.1.0
#20 0x00002aaaaad8ac49 in PyEval_EvalCodeEx () from /usr/lib64/libpython2.7.so.1.0
#21 0x00002aaaaadb9592 in PyEval_EvalCode () from /usr/lib64/libpython2.7.so.1.0
#22 0x00002aaaaadc7c61 in ?? () from /usr/lib64/libpython2.7.so.1.0
#23 0x00002aaaaadc8074 in PyRun_FileExFlags () from /usr/lib64/libpython2.7.so.1.0
#24 0x00002aaaaadc87c9 in PyRun_SimpleFileExFlags () from /usr/lib64/libpython2.7.so.1.0
#25 0x00002aaaaadd21bc in Py_Main () from /usr/lib64/libpython2.7.so.1.0
#26 0x00002aaaab90ebfd in __libc_start_main () from /lib64/libc.so.6
#27 0x00000000004006e9 in _start ()

这让我相信基本问题出在numpy的多数组核心模块(第一个输出的第4行和第二个输出的第18行)。我会在numpy和scipy中提交一个错误报告以防万一。

有没有人见过这种情况?

更新:2013年2月17日(太平洋标准时间下午4:45)

我找到了一台可以运行代码的机器,它有更新版本的SciPy(0.11)和NumPy(1.7.0)。直接运行代码(没有GDB)导致了段错误,但没有任何输出到stdout或stderr。再次通过GDB运行,我得到了以下结果:

Program received signal SIGSEGV, Segmentation fault.
0x00002aaaabead970 in ?? () from /lib/x86_64-linux-gnu/libc.so.6
(gdb) bt
#0  0x00002aaaabead970 in ?? () from /lib/x86_64-linux-gnu/libc.so.6
#1  0x00002aaaac5fcd04 in PyDataMem_FREE (ptr=<optimized out>, $K8=<optimized out>) at numpy/core/src/multiarray/multiarraymodule.c:3510
#2  array_dealloc (self=0xc00ab7edbfc228fe) at numpy/core/src/multiarray/arrayobject.c:416
#3  0x0000000000498eac in PyEval_EvalFrameEx ()
#4  0x000000000049f1c0 in PyEval_EvalCodeEx ()
#5  0x00000000004a9081 in PyRun_FileExFlags ()
#6  0x00000000004a9311 in PyRun_SimpleFileExFlags ()
#7  0x00000000004aa8bd in Py_Main ()
#8  0x00002aaaabe4f76d in __libc_start_main () from /lib/x86_64-linux-gnu/libc.so.6
#9  0x000000000041b9b1 in _start ()

我知道这不如带有调试符号的NumPy有用,我会尝试这样做,并稍后发布输出。

2 个回答

1

基本上,W 是一个稀疏矩阵,而 Q(或者 np.log(Q)-1)是一个密集矩阵。当你把一个密集矩阵和一个稀疏矩阵相乘时,得到的结果也会以稀疏矩阵的形式表示(这很有道理)。

我可能漏掉了一些很明显的东西,最后看起来像个傻瓜,但……

如果 Q 是一个密集矩阵,而你希望把结果存储为一个密集矩阵,那么你可能也有足够的空间来把 W 存储为一个密集矩阵。这意味着:

W.todense()*(np.log(Q)-1)

从细节来看,正如你在评论中计算的那样,这将需要 35.8GB 的临时内存。考虑到你有 131GB 的数据,并且这些数据“在内存中很舒适”,那么临时使用另外 35.8GB 看起来是合理的。

如果这合理,你总是可以自己分解矩阵乘法。显然,逐行或逐列进行计算会让整个过程变得非常慢(可能不会慢到让过程崩溃,但仍然可能慢到不可接受)。不过,如果一次处理,比如说 1GB 的行,这样做应该不会太糟糕。这意味着临时存储大约几GB,可能只会有小幅度的减速。当然,这样做会让代码变得更复杂和难看,但也不是完全无法管理的。

6

在Numpy的Github页面上关于同样问题的讨论中(https://github.com/numpy/numpy/issues/2995),我了解到Numpy和Scipy不支持生成稀疏矩阵时包含这么多非零元素。

简单来说,W是一个稀疏矩阵,而Q(或者np.log(Q)-1)是一个密集矩阵。当你把一个密集矩阵和一个稀疏矩阵相乘时,得到的结果也会是稀疏矩阵的形式(这样做很合理)。但是要注意,由于我的W矩阵没有零行,所以结果W*(np.log(Q)-1)会有nnz > 2^31(220万乘以2000),这超过了当前版本的Scipy中稀疏矩阵允许的最大元素数量。

在这个阶段,我不太确定还有什么其他方法可以解决这个问题,除非用另一种语言重新实现。也许在Python中还是可以做到,但可能更好的是直接用C++和Eigen来实现。

特别感谢pv.的帮助,帮我找到了确切的问题,也感谢其他所有人的头脑风暴!

撰写回答