Matlab和numpy/scipy中的FFT结果不同

13 投票
1 回答
7997 浏览
提问于 2025-04-17 09:16

我正在尝试重新实现一个MATLAB的工具箱。那里使用了快速傅里叶变换(fft)。当我在相同的数据上执行相同的操作时,得到的结果和MATLAB的不一样。你看看:

MATLAB:

Msig =

 0     0     0     0
 0     0     0     0
 0     0     0     0
 0     0     0     0
 0     1     0     0
 0     0     0     0

fft(Msig.')

Columns 1 through 4

    0                  0                  0                  0          
    0                  0                  0                  0          
    0                  0                  0                  0          
    0                  0                  0                  0          

Columns 5 through 6

 1.0000                  0          
      0 - 1.0000i        0          
-1.0000                  0          
      0 + 1.0000i        0    

PYTHON:

Msig=
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]]) 

np.fft.fft(Msig.transpose())
array([[ 0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j,
         0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j,
         0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j],
       [ 1.0 +0.00000000e+00j, -0.5 +8.66025404e-01j,
        -0.5 -8.66025404e-01j,  1.0 -3.88578059e-16j,
        -0.5 +8.66025404e-01j, -0.5 -8.66025404e-01j],
       [ 0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j,
         0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j,
         0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j],
       [ 0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j,
        0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j,
         0.0 +0.00000000e+00j,  0.0 +0.00000000e+00j]])

我能得到的最好结果是,通过调整np.fft.fft()/np.fft.fft2()/np.fft.fftn()的参数(比如轴等),得到的值是相同的,但位置却偏移了。不幸的是,手动调整位置不是一个选项,因为Msig矩阵的大小和形状会根据输入参数的不同而变化。

你有没有什么线索可以解决这个问题,可能的原因是什么?

1 个回答

16

在Matlab中,fft是对矩阵的每一列进行处理的。而在numpy中,fft默认是对最后一个轴(也就是行)进行处理的。如果你想要:

>>> np.fft.fft(Msig.T, axis=0)
array([[ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],
       [ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j,  0.-1.j,  0.+0.j],
       [ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j, -1.+0.j,  0.+0.j],
       [ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j,  0.+1.j,  0.+0.j]])

或者

>>> np.fft.fft(Msig).T
array([[ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],
       [ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j,  0.-1.j,  0.+0.j],
       [ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j, -1.+0.j,  0.+0.j],
       [ 0.+0.j,  0.+0.j,  0.+0.j,  0.+0.j,  0.+1.j,  0.+0.j]])

撰写回答