使用标准库在Python中进行私有/公有加密
有没有什么模块是我搜索时没找到的,可以让我写出下面这样的代码?我想写这种代码的原因不重要。我只想要一些简单的代码,能够生成公钥和私钥,并且可以方便地用这些密钥来编码和解码数据。
import module, os
method, bits, data = 'RSA', 1024, os.urandom(1024)
public, private = module.generate_keys(method, bits)
assert isinstance(public, bytes) and isinstance(private, bytes)
assert module.decode(module.encode(data, private), public) == data
assert module.decode(module.encode(data, public), private) == data
目前大多数可用的选项都需要下载一个包,而且只能在Python 2.x上运行。还有很多库是用来处理PEM文件或其他类型的证书的。我希望能避免处理这些文件,能够即时生成公钥和私钥,并且快速在内存中处理数据。
4 个回答
2
这是另一个例子
import random
# RSA Algorithm
ops = raw_input('Would you like a list of prime numbers to choose from (y/n)? ')
op = ops.upper()
if op == 'Y':
print """\n 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 \n"""
rsa()
else:
print "\n"
rsa()
def rsa():
# Choose two prime numbers p and q
p = raw_input('Choose a p: ')
p = int(p)
while isPrime(p) == False:
print "Please ensure p is prime"
p = raw_input('Choose a p: ')
p = int(p)
q = raw_input('Choose a q: ')
q = int(q)
while isPrime(q) == False or p==q:
print "Please ensure q is prime and NOT the same value as p"
q = raw_input('Choose a q: ')
q = int(q)
# Compute n = pq
n = p * q
# Compute the phi of n
phi = (p-1) * (q-1)
# Choose an integer e such that e and phi(n) are coprime
e = random.randrange(1,phi)
# Use Euclid's Algorithm to verify that e and phi(n) are comprime
g = euclid(e,phi)
while(g!=1):
e = random.randrange(1,phi)
g = euclid(e,phi)
# Use Extended Euclid's Algorithm
d = extended_euclid(e,phi)
# Public and Private Key have been generated
public_key=(e,n)
private_key=(d,n)
print "Public Key [E,N]: ", public_key
print "Private Key [D,N]: ", private_key
# Enter plain text to be encrypted using the Public Key
sentence = raw_input('Enter plain text: ')
letters = list(sentence)
cipher = []
num = ""
# Encrypt the plain text
for i in range(0,len(letters)):
print "Value of ", letters[i], " is ", character[letters[i]]
c = (character[letters[i]]**e)%n
cipher += [c]
num += str(c)
print "Cipher Text is: ", num
plain = []
sentence = ""
# Decrypt the cipher text
for j in range(0,len(cipher)):
p = (cipher[j]**d)%n
for key in character.keys():
if character[key]==p:
plain += [key]
sentence += key
break
print "Plain Text is: ", sentence
# Euclid's Algorithm
def euclid(a, b):
if b==0:
return a
else:
return euclid(b, a % b)
# Euclid's Extended Algorithm
def extended_euclid(e,phi):
d=0
x1=0
x2=1
y1=1
orig_phi = phi
tempPhi = phi
while (e>0):
temp1 = int(tempPhi/e)
temp2 = tempPhi - temp1 * e
tempPhi = e
e = temp2
x = x2- temp1* x1
y = d - temp1 * y1
x2 = x1
x1 = x
d = y1
y1 = y
if tempPhi == 1:
d += phi
break
return d
# Checks if n is a prime number
def isPrime(n):
for i in range(2,n):
if n%i == 0:
return False
return True
character = {"A":1,"B":2,"C":3,"D":4,"E":5,"F":6,"G":7,"H":8,"I":9,"J":10,
"K":11,"L":12,"M":13,"N":14,"O":15,"P":16,"Q":17,"R":18,"S":19,
"T":20,"U":21,"V":22,"W":23,"X":24,"Y":25,"Z":26,"a":27,"b":28,
"c":29,"d":30,"e":31,"f":32,"g":33,"h":34,"i":35,"j":36,"k":37,
"l":38,"m":39,"n":40,"o":41,"p":42,"q":43,"r":44,"s":45,"t":46,
"u":47,"v":48,"w":49,"x":50,"y":51,"z":52, " ":53, ".":54, ",":55,
"?":56,"/":57,"!":58,"(":59,")":60,"$":61,":":62,";":63,"'":64,"@":65,
"#":66,"%":67,"^":68,"&":69,"*":70,"+":71,"-":72,"_":73,"=":74}
3
PyCrypto 从版本2.4.1开始可以在Python 3上使用。
38
公钥加密在标准库里是没有的。不过在PyPi上有一些第三方库可以用:
如果你对背后的数学原理感兴趣,Python让你很容易进行实验:
code = pow(msg, 65537, 5551201688147) # encode using a public key
plaintext = pow(code, 109182490673, 5551201688147) # decode using a private key
生成密钥的过程稍微复杂一点。这里有一个简化的例子,展示如何使用urandom作为随机源在内存中生成密钥。这个代码在Py2.6和Py3.x上都能运行:
import random
def gen_prime(N=10**8, bases=range(2,20000)):
# XXX replace with a more sophisticated algorithm
p = 1
while any(pow(base, p-1, p) != 1 for base in bases):
p = random.SystemRandom().randrange(N)
return p
def multinv(modulus, value):
'''Multiplicative inverse in a given modulus
>>> multinv(191, 138)
18
>>> 18 * 138 % 191
1
'''
# http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
x, lastx = 0, 1
a, b = modulus, value
while b:
a, q, b = b, a // b, a % b
x, lastx = lastx - q * x, x
result = (1 - lastx * modulus) // value
return result + modulus if result < 0 else result
def keygen(N):
'''Generate public and private keys from primes up to N.
>>> pubkey, privkey = keygen(2**64)
>>> msg = 123456789012345
>>> coded = pow(msg, 65537, pubkey)
>>> plain = pow(coded, privkey, pubkey)
>>> assert msg == plain
'''
# http://en.wikipedia.org/wiki/RSA
prime1 = gen_prime(N)
prime2 = gen_prime(N)
totient = (prime1 - 1) * (prime2 - 1)
return prime1 * prime2, multinv(totient, 65537)