Python中的计算科学网格生成
我需要一个Python的模块或者包,能提供一个网格,让我可以进行计算科学的工作。我不是在做图形方面的事情,所以我觉得blender这个包不太适合我。
有没有人知道哪个包比较好呢?
4 个回答
0
这是从Kardontchik的移植代码中改编过来的,
import numpy as np
from numpy import pi as pi
from scipy.spatial import Delaunay
import matplotlib.pylab as plt
from scipy.optimize import fmin
import matplotlib.pylab as plt
def ktrimesh(p,bars,pflag=0):
# create the (x,y) data for the plot
xx1 = p[bars[:,0],0]; yy1 = p[bars[:,0],1]
xx2 = p[bars[:,1],0]; yy2 = p[bars[:,1],1]
xmin = np.min(p[:,0])
xmax = np.max(p[:,0])
ymin = np.min(p[:,1])
ymax = np.max(p[:,1])
xmin = xmin - 0.05*(xmax - xmin)
xmax = xmax + 0.05*(xmax - xmin)
ymin = ymin - 0.05*(ymax - ymin)
ymax = ymax + 0.05*(ymax - ymin)
plt.figure()
for i in range(len(xx1)):
xp = np.array([xx1[i],xx2[i]])
yp = np.array([yy1[i],yy2[i]])
plt.plot(xmin,ymin,'.',xmax,ymax,'.',markersize=0.1)
plt.plot(xp,yp,'k')
plt.axis('equal')
if pflag == 0:
stitle = 'Triangular Mesh'
if pflag == 1:
stitle = 'Visual Boundary Integrity Check'
#plt.title('Triangular Mesh')
plt.title(stitle)
plt.xlabel('x')
plt.ylabel('y')
plt.show()
return 1
def ccw_tri(p,t):
"""
orients all the triangles counterclockwise
"""
# vector A from vertex 0 to vertex 1
# vector B from vertex 0 to vertex 2
A01x = p[t[:,1],0] - p[t[:,0],0]
A01y = p[t[:,1],1] - p[t[:,0],1]
B02x = p[t[:,2],0] - p[t[:,0],0]
B02y = p[t[:,2],1] - p[t[:,0],1]
# if vertex 2 lies to the left of vector A the component z of
# their vectorial product A^B is positive
Cz = A01x*B02y - A01y*B02x
a = t[np.where(Cz<0)]
b = t[np.where(Cz>=0)]
a[:,[1,2]] = a[:,[2,1]]
t = np.concatenate((a, b))
return t
def triqual_flag(p,t):
# a(1,0), b(2,0), c(2,1)
a = np.sqrt((p[t[:,1],0] - p[t[:,0],0])**2 + (p[t[:,1],1] - p[t[:,0],1])**2)
b = np.sqrt((p[t[:,2],0] - p[t[:,0],0])**2 + (p[t[:,2],1] - p[t[:,0],1])**2)
c = np.sqrt((p[t[:,2],0] - p[t[:,1],0])**2 + (p[t[:,2],1] - p[t[:,1],1])**2)
A = 0.25*np.sqrt((a+b+c)*(b+c-a)*(a+c-b)*(a+b-c))
R = 0.25*(a*b*c)/A
r = 0.5*np.sqrt( (a+b-c)*(b+c-a)*(a+c-b)/(a+b+c) )
q = 2.0*(r/R)
min_edge = np.minimum(np.minimum(a,b),c)
min_angle_deg = (180.0/np.pi)*np.arcsin(0.5*min_edge/R)
min_q = np.min(q)
min_ang = np.min(min_angle_deg)
return min_q, min_ang
def triqual(p,t,fh,qlim=0.2):
# a(1,0), b(2,0), c(2,1)
a = np.sqrt((p[t[:,1],0] - p[t[:,0],0])**2 + (p[t[:,1],1] - p[t[:,0],1])**2)
b = np.sqrt((p[t[:,2],0] - p[t[:,0],0])**2 + (p[t[:,2],1] - p[t[:,0],1])**2)
c = np.sqrt((p[t[:,2],0] - p[t[:,1],0])**2 + (p[t[:,2],1] - p[t[:,1],1])**2)
A = 0.25*np.sqrt((a+b+c)*(b+c-a)*(a+c-b)*(a+b-c))
R = 0.25*(a*b*c)/A
r = 0.5*np.sqrt( (a+b-c)*(b+c-a)*(a+c-b)/(a+b+c) )
q = 2.0*(r/R)
pmid = (p[t[:,0]] + p[t[:,1]] + p[t[:,2]])/3.0
hmid = fh(pmid)
Ah = A/hmid
Anorm = Ah/np.mean(Ah)
min_edge = np.minimum(np.minimum(a,b),c)
min_angle_deg = (180.0/np.pi)*np.arcsin(0.5*min_edge/R)
plt.figure()
plt.subplot(3,1,1)
plt.hist(q)
plt.title('Histogram;Triangle Statistics:q-factor,Minimum Angle and Area')
plt.subplot(3,1,2)
plt.hist(min_angle_deg)
plt.ylabel('Number of Triangles')
plt.subplot(3,1,3)
plt.hist(Anorm)
plt.xlabel('Note: for equilateral triangles q = 1 and angle = 60 deg')
plt.show()
indq = np.where(q < qlim) # indq is a tuple: len(indq) = 1
if list(indq[0]) != []:
print ('List of triangles with q < %5.3f and the (x,y) location of their nodes' % qlim)
print ('')
print ('q t[i] t[nodes] [x,y][0] [x,y][1] [x,y][2]')
for i in indq[0]:
print ('%.2f %4d [%4d,%4d,%4d] [%+.2f,%+.2f] [%+.2f,%+.2f] [%+.2f,%+.2f]' % \
(q[i],i,t[i,0],t[i,1],t[i,2],p[t[i,0],0],p[t[i,0],1],p[t[i,1],0],p[t[i,1],1],p[t[i,2],0],p[t[i,2],1]))
print ('')
# end of detailed data on worst offenders
return q,min_angle_deg,Anorm
class Circle:
def __init__(self,xc,yc,r):
self.xc, self.yc, self.r = xc, yc, r
def __call__(self,p):
xc, yc, r = self.xc, self.yc, self.r
d = np.sqrt((p[:,0] - xc)**2 + (p[:,1] - yc)**2) - r
return d
class Rectangle:
def __init__(self,x1,x2,y1,y2):
self.x1, self.x2, self.y1, self.y2 = x1,x2,y1,y2
def __call__(self,p):
x1,x2,y1,y2 = self.x1, self.x2, self.y1, self.y2
d1 = p[:,1] - y1 # if p inside d1 > 0
d2 = y2 - p[:,1] # if p inside d2 > 0
d3 = p[:,0] - x1 # if p inside d3 > 0
d4 = x2 - p[:,0] # if p inside d4 > 0
d = -np.minimum(np.minimum(np.minimum(d1,d2),d3),d4)
return d
class Polygon:
def __init__(self,verts):
self.verts = verts
def __call__(self,p):
verts = self.verts
# close the polygon
cverts = np.zeros((len(verts)+1,2))
cverts[0:-1] = verts
cverts[-1] = verts[0]
# initialize
inside = np.zeros(len(p))
dist = np.zeros(len(p))
Cz = np.zeros(len(verts)) # z-components of the vectorial products
dist_to_edge = np.zeros(len(verts))
in_ref = np.ones(len(verts))
# if np.sign(Cz) == in_ref then point is inside
for j in range(len(p)):
Cz = (cverts[1:,0] - cverts[0:-1,0])*(p[j,1] - cverts[0:-1,1]) - \
(cverts[1:,1] - cverts[0:-1,1])*(p[j,0] - cverts[0:-1,0])
dist_to_edge = Cz/np.sqrt( \
(cverts[1:,0] - cverts[0:-1,0])**2 + \
(cverts[1:,1] - cverts[0:-1,1])**2)
inside[j] = int(np.array_equal(np.sign(Cz),in_ref))
dist[j] = (1 - 2*inside[j])*np.min(np.abs(dist_to_edge))
return dist
class Union:
def __init__(self,fd1,fd2):
self.fd1, self.fd2 = fd1, fd2
def __call__(self,p):
fd1,fd2 = self.fd1, self.fd2
d = np.minimum(fd1(p),fd2(p))
return d
class Diff:
def __init__(self,fd1,fd2):
self.fd1, self.fd2 = fd1, fd2
def __call__(self,p):
fd1,fd2 = self.fd1, self.fd2
d = np.maximum(fd1(p),-fd2(p))
return d
class Intersect:
def __init__(self,fd1,fd2):
self.fd1, self.fd2 = fd1, fd2
def __call__(self,p):
fd1,fd2 = self.fd1, self.fd2
d = np.maximum(fd1(p),fd2(p))
return d
class Protate:
def __init__(self,phi):
self.phi = phi
def __call__(self,p):
phi = self.phi
c = np.cos(phi)
s = np.sin(phi)
temp = np.copy(p[:,0])
rp = np.copy(p)
rp[:,0] = c*p[:,0] - s*p[:,1]
rp[:,1] = s*temp + c*p[:,1]
return rp
class Pshift:
def __init__(self,x0,y0):
self.x0, self.y0 = x0,y0
def __call__(self,p):
x0, y0 = self.x0, self.y0
p[:,0] = p[:,0] + x0
p[:,1] = p[:,1] + y0
return p
def Ellipse_dist_to_minimize(t,p,xc,yc,a,b):
x = xc + a*np.cos(t) # coord x of the point on the ellipse
y = yc + b*np.sin(t) # coord y of the point on the ellipse
dist = (p[0] - x)**2 + (p[1] - y)**2
return dist
class Ellipse:
def __init__(self,xc,yc,a,b):
self.xc, self.yc, self.a, self.b = xc, yc, a, b
self.t, self.verts = self.pick_points_on_shape()
def pick_points_on_shape(self):
xc, yc, a, b = self.xc, self.yc, self.a, self.b
c = np.array([xc,yc])
t = np.linspace(0,(7.0/4.0)*pi,8)
verts = np.zeros((8,2))
verts[:,0] = c[0] + a*np.cos(t)
verts[:,1] = c[1] + b*np.sin(t)
return t, verts
def inside_ellipse(self,p):
xc, yc, a, b = self.xc, self.yc, self.a, self.b
c = np.array([xc,yc])
r, phase = self.rect_to_polar(p-c)
r_ellipse = self.rellipse(phase)
in_ref = np.ones(len(p))
inside = 0.5 + 0.5*np.sign(r_ellipse-r)
return inside
def rect_to_polar(self,p):
r = np.sqrt(p[:,0]**2 + p[:,1]**2)
phase = np.arctan2(p[:,1],p[:,0])
# note: np.arctan2(y,x) order; phase in +/- pi (+/- 180deg)
return r, phase
def rellipse(self,phi):
a, b = self.a, self.b
r = a*b/np.sqrt((b*np.cos(phi))**2 + (a*np.sin(phi))**2)
return r
def find_closest_vertex(self,point):
t, verts = self.t, self.verts
dist = np.zeros(len(t))
for i in range(len(t)):
dist[i] = (point[0] - verts[i,0])**2 + (point[1] - verts[i,1])**2
ind = np.argmin(dist)
t0 = t[ind]
return t0
def __call__(self,p):
xc, yc, a, b = self.xc, self.yc, self.a, self.b
t, verts = self.t, self.verts
dist = np.zeros(len(p))
inside = self.inside_ellipse(p)
for j in range(len(p)):
t0 = self.find_closest_vertex(p[j]) # initial guess to minimizer
opt = fmin(Ellipse_dist_to_minimize,t0, \
args=(p[j],xc,yc,a,b),full_output=1,disp=0)
# add full_output=1 so we can retrieve the min dist(squared)
# (2nd argument of opt array, 1st argument is the optimum t)
min_dist = np.sqrt(opt[1])
dist[j] = min_dist*(1 - 2*inside[j])
return dist
def distmesh(fd,fh,h0,xmin,ymin,xmax,ymax,pfix,ttol=0.1,dptol=0.001,Iflag=1,qmin=1.0):
geps = 0.001*h0; deltat = 0.2; Fscale = 1.2
deps = h0 * np.sqrt(np.spacing(1))
random_seed = 17
h0x = h0; h0y = h0*np.sqrt(3)/2 # to obtain equilateral triangles
Nx = int(np.floor((xmax - xmin)/h0x))
Ny = int(np.floor((ymax - ymin)/h0y))
x = np.linspace(xmin,xmax,Nx)
y = np.linspace(ymin,ymax,Ny)
# create the grid in the (x,y) plane
xx,yy = np.meshgrid(x,y)
xx[1::2] = xx[1::2] + h0x/2.0 # shifts even rows by h0x/2
p = np.zeros((np.size(xx),2))
p[:,0] = np.reshape(xx,np.size(xx))
p[:,1] = np.reshape(yy,np.size(yy))
p = np.delete(p,np.where(fd(p) > geps),axis=0)
np.random.seed(random_seed)
r0 = 1.0/fh(p)**2
p = np.concatenate((pfix,p[np.random.rand(len(p))<r0/max(r0),:]))
pold = np.inf
Num_of_Delaunay_triangulations = 0
Num_of_Node_movements = 0 # dp = F*dt
while (1):
Num_of_Node_movements += 1
if Iflag == 1 or Iflag == 3: # Newton flag
print ('Num_of_Node_movements = %3d' % (Num_of_Node_movements))
if np.max(np.sqrt(np.sum((p - pold)**2,axis = 1))) > ttol:
Num_of_Delaunay_triangulations += 1
if Iflag == 1 or Iflag == 3: # Delaunay flag
print ('Num_of_Delaunay_triangulations = %3d' % \
(Num_of_Delaunay_triangulations))
pold = p
tri = Delaunay(p) # instantiate a class
t = tri.vertices
pmid = (p[t[:,0]] + p[t[:,1]] + p[t[:,2]])/3.0
t = t[np.where(fd(pmid) < -geps)]
bars = np.concatenate((t[:,[0,1]],t[:,[0,2]], t[:,[1,2]]))
bars = np.unique(np.sort(bars),axis=0)
if Iflag == 4:
min_q, min_angle_deg = triqual_flag(p,t)
print ('Del iter: %3d, min q = %5.2f, min angle = %3.0f deg' \
% (Num_of_Delaunay_triangulations, min_q, min_angle_deg))
if min_q > qmin:
break
if Iflag == 2 or Iflag == 3:
ktrimesh(p,bars)
# move mesh points based on bar lengths L and forces F
barvec = p[bars[:,0],:] - p[bars[:,1],:]
L = np.sqrt(np.sum(barvec**2,axis=1))
hbars = 0.5*(fh(p[bars[:,0],:]) + fh(p[bars[:,1],:]))
L0 = hbars*Fscale*np.sqrt(np.sum(L**2)/np.sum(hbars**2))
F = np.maximum(L0-L,0)
Fvec = np.column_stack((F,F))*(barvec/np.column_stack((L,L)))
Ftot = np.zeros((len(p),2))
n = len(bars)
for j in range(n):
Ftot[bars[j,0],:] += Fvec[j,:] # the : for the (x,y) components
Ftot[bars[j,1],:] -= Fvec[j,:]
# force = 0 at fixed points, so they do not move:
Ftot[0: len(pfix),:] = 0
# update the node positions
p = p + deltat*Ftot
# bring outside points back to the boundary
d = fd(p); ix = d > 0 # find points outside (d > 0)
dpx = np.column_stack((p[ix,0] + deps,p[ix,1]))
dgradx = (fd(dpx) - d[ix])/deps
dpy = np.column_stack((p[ix,0], p[ix,1] + deps))
dgrady = (fd(dpy) - d[ix])/deps
p[ix,:] = p[ix,:] - np.column_stack((dgradx*d[ix], dgrady*d[ix]))
# termination criterium: all interior nodes move less than dptol:
if max(np.sqrt(np.sum(deltat*Ftot[d<-geps,:]**2,axis=1))/h0) < dptol:
break
final_tri = Delaunay(p) # another instantiation of the class
t = final_tri.vertices
pmid = (p[t[:,0]] + p[t[:,1]] + p[t[:,2]])/3.0
# keep the triangles whose geometrical center is inside the shape
t = t[np.where(fd(pmid) < -geps)]
bars = np.concatenate((t[:,[0,1]],t[:,[0,2]], t[:,[1,2]]))
# delete repeated bars
#bars = unique_rows(np.sort(bars))
bars = np.unique(np.sort(bars),axis=0)
# orient all the triangles counterclockwise (ccw)
t = ccw_tri(p,t)
# graphical output of the current mesh
ktrimesh(p,bars)
triqual(p,t,fh)
return p,t,bars
def boundary_bars(t):
# create the bars (edges) of every triangle
bars = np.concatenate((t[:,[0,1]],t[:,[0,2]], t[:,[1,2]]))
# sort all the bars
data = np.sort(bars)
# find the bars that are not repeated
Delaunay_bars = dict()
for row in data:
row = tuple(row)
if row in Delaunay_bars:
Delaunay_bars[row] += 1
else:
Delaunay_bars[row] = 1
# return the keys of Delaunay_bars whose value is 1 (non-repeated bars)
bbars = []
for key in Delaunay_bars:
if Delaunay_bars[key] == 1:
bbars.append(key)
bbars = np.asarray(bbars)
return bbars
def plot_shapes(xc,yc,r):
# circle for plotting
t_cir = np.linspace(0,2*pi)
x_cir = xc + r*np.cos(t_cir)
y_cir = yc + r*np.sin(t_cir)
plt.figure()
plt.plot(x_cir,y_cir)
plt.grid()
plt.title('Shapes')
plt.xlabel('x')
plt.ylabel('y')
plt.axis('equal')
#plt.show()
return
plt.close('all')
xc = 0; yc = 0; r = 1.0
x1,y1 = -1.0,-2.0
x2,y2 = 2.0,3.0
plot_shapes(xc,yc,r)
xmin = -1.5; ymin = -1.5
xmax = 1.5; ymax = 1.5
h0 = 0.4
pfix = np.zeros((0,2)) # null 2D array, no fixed points provided
fd = Circle(xc,yc,r)
fh = lambda p: np.ones(len(p))
p,t,bars = distmesh(fd,fh,h0,xmin,ymin,xmax,ymax,pfix,Iflag=4)
6
如果你想在网格上解决一些像流体力学(FE)或计算流体力学(CFD)这样的方程,可以使用 MeshPy,它支持二维和三维的计算。MeshPy 是一个很不错的工具,它在已有的工具 tetgen 和 triangle 的基础上进行了封装。
如果你想要更常见的图形风格的网格,2011年的 PyCon 大会上有一个有趣的演讲 “算法生成 OpenGL 几何体”,讲述了一种实用的程序化网格生成方法。演讲中的代码可以在 网上找到。
如果你对从数据中重建表面感兴趣,斯坦福 3D 扫描库 是一个不错的选择,这里有著名的斯坦福兔子模型。
补充:
如果你想要一个没有依赖的替代方案,可以考虑使用 gmsh,它是跨平台的,并且在后台使用了类似于 MeshPy 的工具。