Baum-Welch算法实现示例
我正在学习Baum-Welch算法,这个算法是用在隐马尔可夫模型中的。我了解前向-后向模型的基本理论,但如果有人能用代码来解释一下就太好了(我觉得看代码更容易,因为我可以自己动手试试来理解)。我在GitHub和Bitbucket上找过,但没有找到容易理解的例子。
网上有很多关于隐马尔可夫模型的教程,但大多数情况下概率已经给出,或者像拼写检查器那样,通过添加单词的出现次数来构建模型。如果有人能提供只用观察数据来创建Baum-Welch模型的例子,那就太好了。例如,在这个链接中,如果你只有:
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
这只是一个例子,我觉得任何能解释清楚的例子都很好,我们可以通过动手实践来更好地理解。我有一个具体的问题想解决,但我觉得展示一些大家都能学习并应用到自己问题上的代码可能更有价值(如果不合适,我可以发我自己的问题)。不过如果可以的话,最好是用Python(或者Java)来写。
提前谢谢大家!
1 个回答
这里有一些我几年前为一门课写的代码,灵感来自于Jurafsky/Martin的书(第二版,第六章,如果你能找到这本书的话)。这段代码其实写得不太好,没有用到numpy,而这本来是应该用的,而且为了让数组从1开始索引而做了一些麻烦的处理,而不是直接调整公式让它从0开始。不过,也许这些代码能帮到你。代码中提到的Baum-Welch算法被称为“前向-后向”。
这个例子/测试数据是基于Jason Eisner的电子表格,这个表格实现了一些与隐马尔可夫模型(HMM)相关的算法。需要注意的是,模型的实现版本使用了一个吸收的结束状态,其他状态可以转移到这个结束状态,而不是假设一个固定的序列长度。
(如果你喜欢的话,这段代码也可以在这里找到。)
hmm.py
文件,其中一半是基于以下文件的测试代码:
#!/usr/bin/env python
"""
CS 65 Lab #3 -- 5 Oct 2008
Dougal Sutherland
Implements a hidden Markov model, based on Jurafsky + Martin's presentation,
which is in turn based off work by Jason Eisner. We test our program with
data from Eisner's spreadsheets.
"""
identity = lambda x: x
class HiddenMarkovModel(object):
"""A hidden Markov model."""
def __init__(self, states, transitions, emissions, vocab):
"""
states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end')
start state needs to be first, end state last
states are numbered by their order here
transitions - the probabilities to go from one state to another
transitions[from_state][to_state] = prob
emissions - the probabilities of an observation for a given state
emissions[state][observation] = prob
vocab: a list/tuple of the names of observable values, in order
"""
self.states = states
self.real_states = states[1:-1]
self.start_state = 0
self.end_state = len(states) - 1
self.transitions = transitions
self.emissions = emissions
self.vocab = vocab
# functions to get stuff one-indexed
state_num = lambda self, n: self.states[n]
state_nums = lambda self: xrange(1, len(self.real_states) + 1)
vocab_num = lambda self, n: self.vocab[n - 1]
vocab_nums = lambda self: xrange(1, len(self.vocab) + 1)
num_for_vocab = lambda self, s: self.vocab.index(s) + 1
def transition(self, from_state, to_state):
return self.transitions[from_state][to_state]
def emission(self, state, observed):
return self.emissions[state][observed - 1]
# helper stuff
def _normalize_observations(self, observations):
return [None] + [self.num_for_vocab(o) if o.__class__ == str else o
for o in observations]
def _init_trellis(self, observed, forward=True, init_func=identity):
trellis = [ [None for j in range(len(observed))]
for i in range(len(self.real_states) + 1) ]
if forward:
v = lambda s: self.transition(0, s) * self.emission(s, observed[1])
else:
v = lambda s: self.transition(s, self.end_state)
init_pos = 1 if forward else -1
for state in self.state_nums():
trellis[state][init_pos] = init_func( v(state) )
return trellis
def _follow_backpointers(self, trellis, start):
# don't bother branching
pointer = start[0]
seq = [pointer, self.end_state]
for t in reversed(xrange(1, len(trellis[1]))):
val, backs = trellis[pointer][t]
pointer = backs[0]
seq.insert(0, pointer)
return seq
# actual algorithms
def forward_prob(self, observations, return_trellis=False):
"""
Returns the probability of seeing the given `observations` sequence,
using the Forward algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed)
for t in range(2, len(observed)):
for state in self.state_nums():
trellis[state][t] = sum(
self.transition(old_state, state)
* self.emission(state, observed[t])
* trellis[old_state][t-1]
for old_state in self.state_nums()
)
final = sum(trellis[state][-1] * self.transition(state, -1)
for state in self.state_nums())
return (final, trellis) if return_trellis else final
def backward_prob(self, observations, return_trellis=False):
"""
Returns the probability of seeing the given `observations` sequence,
using the Backward algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed, forward=False)
for t in reversed(range(1, len(observed) - 1)):
for state in self.state_nums():
trellis[state][t] = sum(
self.transition(state, next_state)
* self.emission(next_state, observed[t+1])
* trellis[next_state][t+1]
for next_state in self.state_nums()
)
final = sum(self.transition(0, state)
* self.emission(state, observed[1])
* trellis[state][1]
for state in self.state_nums())
return (final, trellis) if return_trellis else final
def viterbi_sequence(self, observations, return_trellis=False):
"""
Returns the most likely sequence of hidden states, for a given
sequence of observations. Uses the Viterbi algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed, init_func=lambda val: (val, [0]))
for t in range(2, len(observed)):
for state in self.state_nums():
emission_prob = self.emission(state, observed[t])
last = [(old_state, trellis[old_state][t-1][0] * \
self.transition(old_state, state) * \
emission_prob)
for old_state in self.state_nums()]
highest = max(last, key=lambda p: p[1])[1]
backs = [s for s, val in last if val == highest]
trellis[state][t] = (highest, backs)
last = [(old_state, trellis[old_state][-1][0] * \
self.transition(old_state, self.end_state))
for old_state in self.state_nums()]
highest = max(last, key = lambda p: p[1])[1]
backs = [s for s, val in last if val == highest]
seq = self._follow_backpointers(trellis, backs)
return (seq, trellis) if return_trellis else seq
def train_on_obs(self, observations, return_probs=False):
"""
Trains the model once, using the forward-backward algorithm. This
function returns a new HMM instance rather than modifying this one.
"""
observed = self._normalize_observations(observations)
forward_prob, forwards = self.forward_prob( observations, True)
backward_prob, backwards = self.backward_prob(observations, True)
# gamma values
prob_of_state_at_time = posat = [None] + [
[0] + [forwards[state][t] * backwards[state][t] / forward_prob
for t in range(1, len(observations)+1)]
for state in self.state_nums()]
# xi values
prob_of_transition = pot = [None] + [
[None] + [
[0] + [forwards[state1][t]
* self.transition(state1, state2)
* self.emission(state2, observed[t+1])
* backwards[state2][t+1]
/ forward_prob
for t in range(1, len(observations))]
for state2 in self.state_nums()]
for state1 in self.state_nums()]
# new transition probabilities
trans = [[0 for j in range(len(self.states))]
for i in range(len(self.states))]
trans[self.end_state][self.end_state] = 1
for state in self.state_nums():
state_prob = sum(posat[state])
trans[0][state] = posat[state][1]
trans[state][-1] = posat[state][-1] / state_prob
for oth in self.state_nums():
trans[state][oth] = sum(pot[state][oth]) / state_prob
# new emission probabilities
emit = [[0 for j in range(len(self.vocab))]
for i in range(len(self.states))]
for state in self.state_nums():
for output in range(1, len(self.vocab) + 1):
n = sum(posat[state][t] for t in range(1, len(observations)+1)
if observed[t] == output)
emit[state][output-1] = n / sum(posat[state])
trained = HiddenMarkovModel(self.states, trans, emit, self.vocab)
return (trained, posat, pot) if return_probs else trained
# ======================
# = reading from files =
# ======================
def normalize(string):
if '#' in string:
string = string[:string.index('#')]
return string.strip()
def make_hmm_from_file(f):
def nextline():
line = f.readline()
if line == '': # EOF
return None
else:
return normalize(line) or nextline()
n = int(nextline())
states = [nextline() for i in range(n)] # <3 list comprehension abuse
num_vocab = int(nextline())
vocab = [nextline() for i in range(num_vocab)]
transitions = [[float(x) for x in nextline().split()] for i in range(n)]
emissions = [[float(x) for x in nextline().split()] for i in range(n)]
assert nextline() is None
return HiddenMarkovModel(states, transitions, emissions, vocab)
def read_observations_from_file(f):
return filter(lambda x: x, [normalize(line) for line in f.readlines()])
# =========
# = tests =
# =========
import unittest
class TestHMM(unittest.TestCase):
def setUp(self):
# it's complicated to pass args to a testcase, so just use globals
self.hmm = make_hmm_from_file(file(HMM_FILENAME))
self.obs = read_observations_from_file(file(OBS_FILENAME))
def test_forward(self):
prob, trellis = self.hmm.forward_prob(self.obs, True)
self.assertAlmostEqual(prob, 9.1276e-19, 21)
self.assertAlmostEqual(trellis[1][1], 0.1, 4)
self.assertAlmostEqual(trellis[1][3], 0.00135, 5)
self.assertAlmostEqual(trellis[1][6], 8.71549e-5, 9)
self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9)
self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14)
self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13)
self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22)
self.assertAlmostEqual(trellis[2][1], 0.1, 4)
self.assertAlmostEqual(trellis[2][3], 0.03591, 5)
self.assertAlmostEqual(trellis[2][6], 5.30337e-4, 8)
self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11)
self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15)
self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18)
self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22)
def test_backward(self):
prob, trellis = self.hmm.backward_prob(self.obs, True)
self.assertAlmostEqual(prob, 9.1276e-19, 21)
self.assertAlmostEqual(trellis[1][1], 1.1780e-18, 22)
self.assertAlmostEqual(trellis[1][3], 7.2496e-18, 22)
self.assertAlmostEqual(trellis[1][6], 3.3422e-16, 20)
self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15)
self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14)
self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10)
self.assertAlmostEqual(trellis[1][33], 0.1, 4)
self.assertAlmostEqual(trellis[2][1], 7.9496e-18, 22)
self.assertAlmostEqual(trellis[2][3], 2.5145e-17, 21)
self.assertAlmostEqual(trellis[2][6], 1.6662e-15, 19)
self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16)
self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14)
self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9)
self.assertAlmostEqual(trellis[2][33], 0.1, 4)
def test_viterbi(self):
path, trellis = self.hmm.viterbi_sequence(self.obs, True)
self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3])
self.assertAlmostEqual(trellis[1][1] [0], 0.1, 4)
self.assertAlmostEqual(trellis[1][6] [0], 5.62e-05, 7)
self.assertAlmostEqual(trellis[1][7] [0], 4.50e-06, 8)
self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11)
self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12)
self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15)
self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15)
self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19)
self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19)
self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21)
self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21)
self.assertAlmostEqual(trellis[2][ 1][0], 0.1, 4)
self.assertAlmostEqual(trellis[2][ 4][0], 0.00502, 5)
self.assertAlmostEqual(trellis[2][ 6][0], 0.00045, 5)
self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9)
self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14)
self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14)
self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16)
self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18)
self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18)
self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19)
self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20)
def test_learning_probs(self):
trained, gamma, xi = self.hmm.train_on_obs(self.obs, True)
self.assertAlmostEqual(gamma[1][1], 0.129, 3)
self.assertAlmostEqual(gamma[1][3], 0.011, 3)
self.assertAlmostEqual(gamma[1][7], 0.022, 3)
self.assertAlmostEqual(gamma[1][14], 0.887, 3)
self.assertAlmostEqual(gamma[1][18], 0.994, 3)
self.assertAlmostEqual(gamma[1][23], 0.961, 3)
self.assertAlmostEqual(gamma[1][27], 0.507, 3)
self.assertAlmostEqual(gamma[1][33], 0.225, 3)
self.assertAlmostEqual(gamma[2][1], 0.871, 3)
self.assertAlmostEqual(gamma[2][3], 0.989, 3)
self.assertAlmostEqual(gamma[2][7], 0.978, 3)
self.assertAlmostEqual(gamma[2][14], 0.113, 3)
self.assertAlmostEqual(gamma[2][18], 0.006, 3)
self.assertAlmostEqual(gamma[2][23], 0.039, 3)
self.assertAlmostEqual(gamma[2][27], 0.493, 3)
self.assertAlmostEqual(gamma[2][33], 0.775, 3)
self.assertAlmostEqual(xi[1][1][1], 0.021, 3)
self.assertAlmostEqual(xi[1][1][12], 0.128, 3)
self.assertAlmostEqual(xi[1][1][32], 0.13, 3)
self.assertAlmostEqual(xi[2][1][1], 0.003, 3)
self.assertAlmostEqual(xi[2][1][22], 0.017, 3)
self.assertAlmostEqual(xi[2][1][32], 0.095, 3)
self.assertAlmostEqual(xi[1][2][4], 0.02, 3)
self.assertAlmostEqual(xi[1][2][16], 0.018, 3)
self.assertAlmostEqual(xi[1][2][29], 0.010, 3)
self.assertAlmostEqual(xi[2][2][2], 0.972, 3)
self.assertAlmostEqual(xi[2][2][12], 0.762, 3)
self.assertAlmostEqual(xi[2][2][28], 0.907, 3)
def test_learning_results(self):
trained = self.hmm.train_on_obs(self.obs)
tr = trained.transition
self.assertAlmostEqual(tr(0, 0), 0, 5)
self.assertAlmostEqual(tr(0, 1), 0.1291, 4)
self.assertAlmostEqual(tr(0, 2), 0.8709, 4)
self.assertAlmostEqual(tr(0, 3), 0, 4)
self.assertAlmostEqual(tr(1, 0), 0, 5)
self.assertAlmostEqual(tr(1, 1), 0.8757, 4)
self.assertAlmostEqual(tr(1, 2), 0.1090, 4)
self.assertAlmostEqual(tr(1, 3), 0.0153, 4)
self.assertAlmostEqual(tr(2, 0), 0, 5)
self.assertAlmostEqual(tr(2, 1), 0.0925, 4)
self.assertAlmostEqual(tr(2, 2), 0.8652, 4)
self.assertAlmostEqual(tr(2, 3), 0.0423, 4)
self.assertAlmostEqual(tr(3, 0), 0, 5)
self.assertAlmostEqual(tr(3, 1), 0, 4)
self.assertAlmostEqual(tr(3, 2), 0, 4)
self.assertAlmostEqual(tr(3, 3), 1, 4)
em = trained.emission
self.assertAlmostEqual(em(0, 1), 0, 4)
self.assertAlmostEqual(em(0, 2), 0, 4)
self.assertAlmostEqual(em(0, 3), 0, 4)
self.assertAlmostEqual(em(1, 1), 0.6765, 4)
self.assertAlmostEqual(em(1, 2), 0.2188, 4)
self.assertAlmostEqual(em(1, 3), 0.1047, 4)
self.assertAlmostEqual(em(2, 1), 0.0584, 4)
self.assertAlmostEqual(em(2, 2), 0.4251, 4)
self.assertAlmostEqual(em(2, 3), 0.5165, 4)
self.assertAlmostEqual(em(3, 1), 0, 4)
self.assertAlmostEqual(em(3, 2), 0, 4)
self.assertAlmostEqual(em(3, 3), 0, 4)
# train 9 more times
for i in range(9):
trained = trained.train_on_obs(self.obs)
tr = trained.transition
self.assertAlmostEqual(tr(0, 0), 0, 4)
self.assertAlmostEqual(tr(0, 1), 0, 4)
self.assertAlmostEqual(tr(0, 2), 1, 4)
self.assertAlmostEqual(tr(0, 3), 0, 4)
self.assertAlmostEqual(tr(1, 0), 0, 4)
self.assertAlmostEqual(tr(1, 1), 0.9337, 4)
self.assertAlmostEqual(tr(1, 2), 0.0663, 4)
self.assertAlmostEqual(tr(1, 3), 0, 4)
self.assertAlmostEqual(tr(2, 0), 0, 4)
self.assertAlmostEqual(tr(2, 1), 0.0718, 4)
self.assertAlmostEqual(tr(2, 2), 0.8650, 4)
self.assertAlmostEqual(tr(2, 3), 0.0632, 4)
self.assertAlmostEqual(tr(3, 0), 0, 4)
self.assertAlmostEqual(tr(3, 1), 0, 4)
self.assertAlmostEqual(tr(3, 2), 0, 4)
self.assertAlmostEqual(tr(3, 3), 1, 4)
em = trained.emission
self.assertAlmostEqual(em(0, 1), 0, 4)
self.assertAlmostEqual(em(0, 2), 0, 4)
self.assertAlmostEqual(em(0, 3), 0, 4)
self.assertAlmostEqual(em(1, 1), 0.6407, 4)
self.assertAlmostEqual(em(1, 2), 0.1481, 4)
self.assertAlmostEqual(em(1, 3), 0.2112, 4)
self.assertAlmostEqual(em(2, 1), 0.00016,5)
self.assertAlmostEqual(em(2, 2), 0.5341, 4)
self.assertAlmostEqual(em(2, 3), 0.4657, 4)
self.assertAlmostEqual(em(3, 1), 0, 4)
self.assertAlmostEqual(em(3, 2), 0, 4)
self.assertAlmostEqual(em(3, 3), 0, 4)
if __name__ == '__main__':
import sys
HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm'
OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt'
unittest.main()
observations.txt
,这是一个用于测试的观察序列:
2
3
3
2
3
2
3
2
2
3
1
3
3
1
1
1
2
1
1
1
3
1
2
1
1
1
2
3
3
2
3
2
2
example.hmm
,这是用来生成数据的模型。
4 # number of states
START
COLD
HOT
END
3 # size of vocab
1
2
3
# transition matrix
0.0 0.5 0.5 0.0 # from start
0.0 0.8 0.1 0.1 # from cold
0.0 0.1 0.8 0.1 # from hot
0.0 0.0 0.0 1.0 # from end
# emission matrix
0.0 0.0 0.0 # from start
0.7 0.2 0.1 # from cold
0.1 0.2 0.7 # from hot
0.0 0.0 0.0 # from end