Python Dijkstra算法
我正在尝试编写迪杰斯特拉算法,但在代码中表达某些内容时遇到了困难。为了更好地理解,我想用数组来表示我想要的列:
max_nodes
A B C Length Predecessor Visited/Unvisited
A 0 1 2 -1 U
B 1 0 1 -1 U
C 2 1 0 -1 U
所以,下面的代码中会有几个数组:
def dijkstra (graph, start, end)
network[max_nodes][max_nodes]
state [max_nodes][length]
state2 [max_nodes][predecessor]
state3 [max_nodes][visited]
initialNode = 0
for nodes in graph:
D[max_nodes][length] = -1
P[max_nodes][predecessor] = ""
V[max_nodes][visited] = false
for l in graph:
length = lengthFromSource[node] + graph[node][l]
if length < lengthFromSourceNode[w]:
state[l][length] = x
state2[l][predecessor]
state3[l][visited] = true
x +=1
我现在卡住的部分是加粗的地方——我想实现算法的这一部分:
3. 对于当前节点,考虑它所有未访问的邻居,并计算它们的临时距离。例如,如果当前节点(A)的距离是6,而与另一个节点(B)相连的边的长度是2,那么通过A到B的距离就是6+2=8。如果这个距离小于之前记录的距离,就更新这个距离。
4. 当我们考虑完当前节点的所有邻居后,将其标记为已访问。已访问的节点将不再被检查;现在记录的距离是最终的、最小的。
我觉得我在正确的方向上,只是卡在了如何表达“从一个节点开始,获取从源节点到这个节点的长度,如果长度更小,就覆盖之前的值,然后移动到下一个节点”这部分。
2 个回答
10
我也用字典来存储网络。数据的格式如下:
源: {目的地: 成本}
创建一个网络字典(由用户提供)
net = {'0':{'1':100, '2':300},
'1':{'3':500, '4':500, '5':100},
'2':{'4':100, '5':100},
'3':{'5':20},
'4':{'5':20},
'5':{}
}
最短路径算法(用户需要指定起点和终点)
def dijkstra(net, s, t):
# sanity check
if s == t:
return "The start and terminal nodes are the same. Minimum distance is 0."
if s not in net: # python2: if net.has_key(s)==False:
return "There is no start node called " + str(s) + "."
if t not in net: # python2: if net.has_key(t)==False:
return "There is no terminal node called " + str(t) + "."
# create a labels dictionary
labels={}
# record whether a label was updated
order={}
# populate an initial labels dictionary
for i in net.keys():
if i == s: labels[i] = 0 # shortest distance form s to s is 0
else: labels[i] = float("inf") # initial labels are infinity
from copy import copy
drop1 = copy(labels) # used for looping
## begin algorithm
while len(drop1) > 0:
# find the key with the lowest label
minNode = min(drop1, key = drop1.get) #minNode is the node with the smallest label
# update labels for nodes that are connected to minNode
for i in net[minNode]:
if labels[i] > (labels[minNode] + net[minNode][i]):
labels[i] = labels[minNode] + net[minNode][i]
drop1[i] = labels[minNode] + net[minNode][i]
order[i] = minNode
del drop1[minNode] # once a node has been visited, it's excluded from drop1
## end algorithm
# print shortest path
temp = copy(t)
rpath = []
path = []
while 1:
rpath.append(temp)
if temp in order: temp = order[temp] #if order.has_key(temp): temp = order[temp]
else: return "There is no path from " + str(s) + " to " + str(t) + "."
if temp == s:
rpath.append(temp)
break
for j in range(len(rpath)-1,-1,-1):
path.append(rpath[j])
return "The shortest path from " + s + " to " + t + " is " + str(path) + ". Minimum distance is " + str(labels[t]) + "."
# Given a large random network find the shortest path from '0' to '5'
print dijkstra(net, s='0', t='5')
2
首先,我猜这可能是个作业题,因为最好的建议是别自己写,直接在网上找现成的实现。比如说,这个看起来就不错。
假设你真的需要自己动手写代码,那里提到的代码使用字典来存储节点数据。所以你可以输入类似这样的内容:
{
's': {'u' : 10, 'x' : 5},
'u': {'v' : 1, 'x' : 2},
'v': {'y' : 4},
'x': {'u' : 3, 'v' : 9, 'y' : 2},
'y': {'s' : 7, 'v' : 6}
}
这样展示你的图信息似乎更直观。已经访问的节点和距离也可以用字典来保存。