如何将文本分割成句子?
我有一个文本文件。我需要从中提取出一句句子。
这个怎么实现呢?其实有很多细节需要注意,比如句号在缩写中的用法。
我以前用的正则表达式效果不好:
re.compile('(\. |^|!|\?)([A-Z][^;↑\.<>@\^&/\[\]]*(\.|!|\?) )',re.M)
21 个回答
95
与其使用正则表达式来把文本分割成句子,你也可以使用nltk这个库。
>>> from nltk import tokenize
>>> p = "Good morning Dr. Adams. The patient is waiting for you in room number 3."
>>> tokenize.sent_tokenize(p)
['Good morning Dr. Adams.', 'The patient is waiting for you in room number 3.']
161
这个函数可以在大约0.1秒内把《哈克贝里·芬》这本书的所有文本分成句子,并且能处理很多比较棘手的情况,这些情况让句子的解析变得不那么简单。例如:“约翰·约翰逊先生在美国出生,但在以色列获得了博士学位,然后加入耐克公司担任工程师。他还曾在craigslist.org担任商业分析师。”
# -*- coding: utf-8 -*-
import re
alphabets= "([A-Za-z])"
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
starters = "(Mr|Mrs|Ms|Dr|Prof|Capt|Cpt|Lt|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
websites = "[.](com|net|org|io|gov|edu|me)"
digits = "([0-9])"
multiple_dots = r'\.{2,}'
def split_into_sentences(text: str) -> list[str]:
"""
Split the text into sentences.
If the text contains substrings "<prd>" or "<stop>", they would lead
to incorrect splitting because they are used as markers for splitting.
:param text: text to be split into sentences
:type text: str
:return: list of sentences
:rtype: list[str]
"""
text = " " + text + " "
text = text.replace("\n"," ")
text = re.sub(prefixes,"\\1<prd>",text)
text = re.sub(websites,"<prd>\\1",text)
text = re.sub(digits + "[.]" + digits,"\\1<prd>\\2",text)
text = re.sub(multiple_dots, lambda match: "<prd>" * len(match.group(0)) + "<stop>", text)
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
if "”" in text: text = text.replace(".”","”.")
if "\"" in text: text = text.replace(".\"","\".")
if "!" in text: text = text.replace("!\"","\"!")
if "?" in text: text = text.replace("?\"","\"?")
text = text.replace(".",".<stop>")
text = text.replace("?","?<stop>")
text = text.replace("!","!<stop>")
text = text.replace("<prd>",".")
sentences = text.split("<stop>")
sentences = [s.strip() for s in sentences]
if sentences and not sentences[-1]: sentences = sentences[:-1]
return sentences
与 nltk
的比较:
>>> from nltk.tokenize import sent_tokenize
示例 1: 在这里 split_into_sentences
更好(因为它明确处理了很多情况):
>>> text = 'Some sentence. Mr. Holmes...This is a new sentence!And This is another one.. Hi '
>>> split_into_sentences(text)
['Some sentence.',
'Mr. Holmes...',
'This is a new sentence!',
'And This is another one..',
'Hi']
>>> sent_tokenize(text)
['Some sentence.',
'Mr.',
'Holmes...This is a new sentence!And This is another one.. Hi']
示例 2: 在这里 nltk.tokenize.sent_tokenize
更好(因为它使用了机器学习模型):
>>> text = 'The U.S. Drug Enforcement Administration (DEA) says hello. And have a nice day.'
>>> split_into_sentences(text)
['The U.S.',
'Drug Enforcement Administration (DEA) says hello.',
'And have a nice day.']
>>> sent_tokenize(text)
['The U.S. Drug Enforcement Administration (DEA) says hello.',
'And have a nice day.']