Python 平均表格数据帮助

0 投票
5 回答
880 浏览
提问于 2025-04-16 04:27

好的,我有一个可以正常工作的程序。它可以打开一个数据文件,这个文件的数据是按列排列的,数据量太大,Excel 处理不了,然后它会计算每一列的平均值:

示例数据是:

Joe Sam Bob
1   2   3
2   1   3

然后它返回:

Joe Sam Bob
1.5 1.5 3

这很好。不过问题是,有些列的值是 NA。我想跳过这些 NA,计算剩下值的平均数。所以

Bobby
1
NA
2

应该输出为:

Bobby
1.5

这是我现有的程序,之前在这里得到了一些帮助。任何帮助都非常感谢!

with open('C://avy.txt', "rtU") as f:
    columns = f.readline().strip().split(" ")
    numRows = 0
    sums = [0] * len(columns)

    for line in f:
        # Skip empty lines
        if not line.strip():
            continue

        values = line.split(" ")
        for i in xrange(len(values)):
            sums[i] += int(values[i])
        numRows += 1

        with open('c://finished.txt', 'w') as ouf:
             for index, summedRowValue in enumerate(sums):
                 print>>ouf, columns[index], 1.0 * summedRowValue / numRows

现在我有这个:

with open('C://avy.txt', "rtU") as f:

def get_averages(f):
   headers = f.readline().split()
   ncols = len(headers)
   sumx0 = [0] * ncols
   sumx1 = [0.0] * ncols
   lino = 1

for line in f:
   lino += 1
   values = line.split()

for colindex, x in enumerate(values):
        if colindex >= ncols:
             print >> sys.stderr, "Extra data %r in row %d, column %d" %(x, lino, colindex+1)
             continue
             try:
                value = float(x)
             except ValueError:
               continue
               sumx0[colindex] += 1
        sumx1[colindex] += value
        print headers
print sumx1
print sumx0
averages = [
    total / count if count else None
   for total, count in zip(sumx1, sumx0)
    ]
print averages

然后它显示:

追溯(最近的调用最后): 文件 "C:/avy10.py",第 11 行,在 lino += 1 NameError: name 'lino' is not defined

5 个回答

2

[为了更清晰而编辑]

当你从文本文件中读取内容时,这些内容会以字符串的形式导入,而不是数字。这意味着,如果你的文本文件里有数字 3,当你把它读入Python时,你需要先把这个字符串转换成数字,才能进行数学运算。

现在,你有一个包含多列的文本文件。每一列都有一个标题和一系列的项目。每个项目可能是数字,也可能不是。如果是数字,使用 float 函数可以正确转换;如果不是有效的数字(也就是说,无法转换),那么转换时会出现一个叫 ValueError 的错误。

所以,你需要遍历你的列表和项目,正如之前的多个回答所解释的那样。如果可以转换成浮点数,就把这个数据累加起来;如果不能,就跳过这个条目。

如果你想了解什么是“鸭子类型”(这是一种可以简化为“宁可请求原谅也不要请求许可”的编程理念),可以查看这个维基百科链接。如果你开始学习Python,你会经常听到这个术语。

下面我展示了一个可以用来累积统计数据的类(你感兴趣的是平均值)。你可以为表格中的每一列使用这个类的一个实例。

class Accumulator(object):
    """
    Used to accumulate the arithmetic mean of a stream of
    numbers. This implementation does not allow to remove items
    already accumulated, but it could easily be modified to do
    so. also, other statistics could be accumulated.
    """
    def __init__(self):
     # upon initialization, the numnber of items currently
     # accumulated (_n) and the total sum of the items acumulated
     # (_sum) are set to zero because nothing has been accumulated
     # yet.
     self._n = 0
     self._sum = 0.0

    def add(self, item):
     # the 'add' is used to add an item to this accumulator
     try:
        # try to convert the item to a float. If you are
        # successful, add the float to the current sum and
        # increase the number of accumulated items
        self._sum += float(item)
        self._n += 1
     except ValueError:
        # if you fail to convert the item to a float, simply
        # ignore the exception (pass on it and do nothing)
        pass

    @property
    def mean(self):
     # the property 'mean' returns the current mean accumulated in
     # the object
     if self._n > 0:
        # if you have more than zero items accumulated, then return
        # their artithmetic average
        return self._sum / self._n
     else:
        # if you have no items accumulated, return None (you could
        # also raise an exception)
        return None

# using the object:

# Create an instance of the object "Accumulator"
my_accumulator = Accumulator()
print my_accumulator.mean
# prints None because there are no items accumulated

# add one (a number)
my_accumulator.add(1)
print my_accumulator.mean
# prints 1.0

# add two (a string - it will be converted to a float)
my_accumulator.add('2')
print my_accumulator.mean
# prints 1.5

# add a 'NA' (will be ignored because it cannot be converted to float)
my_accumulator.add('NA')
print my_accumulator.mean
# prints 1.5 (notice that it ignored the 'NA')

祝好。

3

这里有一个可用的解决方案:

text = """Joe Sam Bob
1   2   3
2   1   3
NA 2 3
3 5 NA"""

def avg( lst ):
    """ returns the average of a list """
    return 1. * sum(lst)/len(lst)

# split that text
parts = [line.split() for line in text.splitlines()]
#remove the headers
names = parts.pop(0)
# zip(*m) does something like transpose a matrix :-)
columns = zip(*parts)
# convert to numbers and leave out the NA
numbers = [[int(x) for x in column if x != 'NA' ] for column in columns]
# all left is averaging
averages = [avg(col) for col in numbers]
# and printing
for name, x in zip( names, averages):
    print name, x

我在这里写了很多列表推导式,这样你可以打印出中间的步骤,不过这些其实也可以用生成器来实现。

-1

下面的代码能够正确处理不同数量的数据,并且还能检测到多余的数据……换句话说,它的功能比较强大。可以通过添加一些明确的提示来进一步改进,比如 (1) 如果文件是空的 (2) 如果表头是空的。还有一种可能性是专门检查一下是否是 "NA",如果某个字段既不是 "NA" 也不能转换成数字,就发出错误提示。

>>> import sys, StringIO
>>>
>>> data = """\
... Jim Joe Billy Bob
... 1   2   3     x
... 2   x   x     x  666
...
... 3   4   5     x
... """
>>>
>>> def get_averages(f):
...     headers = f.readline().split()
...     ncols = len(headers)
...     sumx0 = [0] * ncols
...     sumx1 = [0.0] * ncols
...     lino = 1
...     for line in f:
...         lino += 1
...         values = line.split()
...         for colindex, x in enumerate(values):
...             if colindex >= ncols:
...                 print >> sys.stderr, "Extra data %r in row %d, column %d" %
(x, lino, colindex+1)
...                 continue
...             try:
...                 value = float(x)
...             except ValueError:
...                 continue
...             sumx0[colindex] += 1
...             sumx1[colindex] += value
...     print headers
...     print sumx1
...     print sumx0
...     averages = [
...         total / count if count else None
...         for total, count in zip(sumx1, sumx0)
...         ]
...     print averages

编辑 在这里添加:

...     return headers, averages

...
>>> sio = StringIO.StringIO(data)
>>> get_averages(sio)
Extra data '666' in row 3, column 5
['Jim', 'Joe', 'Billy', 'Bob']
[6.0, 6.0, 8.0, 0.0]
[3, 2, 2, 0]
[2.0, 3.0, 4.0, None]
>>>

编辑

正常使用:

with open('myfile.text') as mf:
   hdrs, avgs = get_averages(mf)

撰写回答