如何在Python中给函数添加超时
过去有很多尝试想在Python中添加超时功能,也就是说,当设定的时间到了,正在等待的代码可以继续执行。可惜的是,以前的方法要么让正在运行的函数继续运行并消耗资源,要么使用特定平台的方法强行结束这个函数。这个wiki的目的是为这个很多程序员在不同项目中遇到的问题提供一个跨平台的解决方案。
#! /usr/bin/env python
"""Provide way to add timeout specifications to arbitrary functions.
There are many ways to add a timeout to a function, but no solution
is both cross-platform and capable of terminating the procedure. This
module use the multiprocessing module to solve both of those problems."""
################################################################################
__author__ = 'Stephen "Zero" Chappell <Noctis.Skytower@gmail.com>'
__date__ = '11 February 2010'
__version__ = '$Revision: 3 $'
################################################################################
import inspect
import sys
import time
import multiprocessing
################################################################################
def add_timeout(function, limit=60):
"""Add a timeout parameter to a function and return it.
It is illegal to pass anything other than a function as the first
parameter. If the limit is not given, it gets a default value equal
to one minute. The function is wrapped and returned to the caller."""
assert inspect.isfunction(function)
if limit <= 0:
raise ValueError()
return _Timeout(function, limit)
class NotReadyError(Exception): pass
################################################################################
def _target(queue, function, *args, **kwargs):
"""Run a function with arguments and return output via a queue.
This is a helper function for the Process created in _Timeout. It runs
the function with positional arguments and keyword arguments and then
returns the function's output by way of a queue. If an exception gets
raised, it is returned to _Timeout to be raised by the value property."""
try:
queue.put((True, function(*args, **kwargs)))
except:
queue.put((False, sys.exc_info()[1]))
class _Timeout:
"""Wrap a function and add a timeout (limit) attribute to it.
Instances of this class are automatically generated by the add_timeout
function defined above. Wrapping a function allows asynchronous calls
to be made and termination of execution after a timeout has passed."""
def __init__(self, function, limit):
"""Initialize instance in preparation for being called."""
self.__limit = limit
self.__function = function
self.__timeout = time.clock()
self.__process = multiprocessing.Process()
self.__queue = multiprocessing.Queue()
def __call__(self, *args, **kwargs):
"""Execute the embedded function object asynchronously.
The function given to the constructor is transparently called and
requires that "ready" be intermittently polled. If and when it is
True, the "value" property may then be checked for returned data."""
self.cancel()
self.__queue = multiprocessing.Queue(1)
args = (self.__queue, self.__function) + args
self.__process = multiprocessing.Process(target=_target,
args=args,
kwargs=kwargs)
self.__process.daemon = True
self.__process.start()
self.__timeout = self.__limit + time.clock()
def cancel(self):
"""Terminate any possible execution of the embedded function."""
if self.__process.is_alive():
self.__process.terminate()
@property
def ready(self):
"""Read-only property indicating status of "value" property."""
if self.__queue.full():
return True
elif not self.__queue.empty():
return True
elif self.__timeout < time.clock():
self.cancel()
else:
return False
@property
def value(self):
"""Read-only property containing data returned from function."""
if self.ready is True:
flag, load = self.__queue.get()
if flag:
return load
raise load
raise NotReadyError()
def __get_limit(self):
return self.__limit
def __set_limit(self, value):
if value <= 0:
raise ValueError()
self.__limit = value
limit = property(__get_limit, __set_limit,
doc="Property for controlling the value of the timeout.")
编辑:这段代码是为Python 3.x写的,并不是为了作为装饰器来修饰类的方法。multiprocessing
模块并不是为了在进程间修改类实例而设计的。
5 个回答
这是获取Jerub提到的装饰器语法的方法
def timeout(limit=None):
if limit is None:
limit = DEFAULT_TIMEOUT
if limit <= 0:
raise TimeoutError() # why not ValueError here?
def wrap(function):
return _Timeout(function,limit)
return wrap
@timeout(15)
def mymethod(): pass
你代码的主要问题是过度使用了双下划线来避免命名冲突,但这个类其实并不打算被继承。
一般来说,self.__foo
这种写法就像是代码中的一个警告,应该加上注释,比如 # 这是一个混入类,我们不希望任意子类产生命名冲突
。
此外,这个方法的客户端 API 看起来是这样的:
def mymethod(): pass
mymethod = add_timeout(mymethod, 15)
# start the processing
timeout_obj = mymethod()
try:
# access the property, which is really a function call
ret = timeout_obj.value
except TimeoutError:
# handle a timeout here
ret = None
这并不是很符合 Python 的风格,更好的客户端 API 应该是:
@timeout(15)
def mymethod(): pass
try:
my_method()
except TimeoutError:
pass
你在类中使用了 @property,但它其实是一个会改变状态的访问器,这样做并不好。比如,当 .value 被访问两次时,会发生什么?看起来会出错,因为 queue.get() 会返回无效数据,因为队列已经是空的了。
完全去掉 @property。在这种情况下不要使用它,它不适合你的需求。让 call 在被调用时执行,并返回值或者直接抛出异常。如果你真的需要稍后访问值,可以把它做成一个方法,比如 .get() 或 .value()。
关于 _target 的代码应该稍微重写一下:
def _target(queue, function, *args, **kwargs):
try:
queue.put((True, function(*args, **kwargs)))
except:
queue.put((False, exc_info())) # get *all* the exec info, don't do exc_info[1]
# then later:
raise exc_info[0], exc_info[1], exc_info[2]
这样堆栈跟踪信息就能被正确保留,程序员也能看到。
我觉得你在写一个有用的库方面已经迈出了不错的一步,我喜欢你使用处理模块来实现目标。
这个问题是在9年前提出来的,之后Python发生了不少变化,我的经验也增加了很多。在查看了标准库中的其他API后,我想要部分复制其中一个,所以写了这个模块,目的是和问题中提到的那个模块有点相似。
asynchronous.py
#! /usr/bin/env python3
import _thread
import abc as _abc
import collections as _collections
import enum as _enum
import math as _math
import multiprocessing as _multiprocessing
import operator as _operator
import queue as _queue
import signal as _signal
import sys as _sys
import time as _time
__all__ = (
'Executor',
'get_timeout',
'set_timeout',
'submit',
'map_',
'shutdown'
)
class _Base(metaclass=_abc.ABCMeta):
__slots__ = (
'__timeout',
)
@_abc.abstractmethod
def __init__(self, timeout):
self.timeout = _math.inf if timeout is None else timeout
def get_timeout(self):
return self.__timeout
def set_timeout(self, value):
if not isinstance(value, (float, int)):
raise TypeError('value must be of type float or int')
if value <= 0:
raise ValueError('value must be greater than zero')
self.__timeout = value
timeout = property(get_timeout, set_timeout)
def _run_and_catch(fn, args, kwargs):
# noinspection PyPep8,PyBroadException
try:
return False, fn(*args, **kwargs)
except:
return True, _sys.exc_info()[1]
def _run(fn, args, kwargs, queue):
queue.put_nowait(_run_and_catch(fn, args, kwargs))
class _State(_enum.IntEnum):
PENDING = _enum.auto()
RUNNING = _enum.auto()
CANCELLED = _enum.auto()
FINISHED = _enum.auto()
ERROR = _enum.auto()
def _run_and_catch_loop(iterable, *args, **kwargs):
exception = None
for fn in iterable:
error, value = _run_and_catch(fn, args, kwargs)
if error:
exception = value
if exception:
raise exception
class _Future(_Base):
__slots__ = (
'__queue',
'__process',
'__start_time',
'__callbacks',
'__result',
'__mutex'
)
def __init__(self, timeout, fn, args, kwargs):
super().__init__(timeout)
self.__queue = _multiprocessing.Queue(1)
self.__process = _multiprocessing.Process(
target=_run,
args=(fn, args, kwargs, self.__queue),
daemon=True
)
self.__start_time = _math.inf
self.__callbacks = _collections.deque()
self.__result = True, TimeoutError()
self.__mutex = _thread.allocate_lock()
@property
def __state(self):
pid, exitcode = self.__process.pid, self.__process.exitcode
return (_State.PENDING if pid is None else
_State.RUNNING if exitcode is None else
_State.CANCELLED if exitcode == -_signal.SIGTERM else
_State.FINISHED if exitcode == 0 else
_State.ERROR)
def __repr__(self):
root = f'{type(self).__name__} at {id(self)} state={self.__state.name}'
if self.__state < _State.CANCELLED:
return f'<{root}>'
error, value = self.__result
suffix = f'{"raised" if error else "returned"} {type(value).__name__}'
return f'<{root} {suffix}>'
def __consume_callbacks(self):
while self.__callbacks:
yield self.__callbacks.popleft()
def __invoke_callbacks(self):
self.__process.join()
_run_and_catch_loop(self.__consume_callbacks(), self)
def cancel(self):
self.__process.terminate()
self.__invoke_callbacks()
def __auto_cancel(self):
elapsed_time = _time.perf_counter() - self.__start_time
if elapsed_time > self.timeout:
self.cancel()
return elapsed_time
def cancelled(self):
self.__auto_cancel()
return self.__state is _State.CANCELLED
def running(self):
self.__auto_cancel()
return self.__state is _State.RUNNING
def done(self):
self.__auto_cancel()
return self.__state > _State.RUNNING
def __handle_result(self, error, value):
self.__result = error, value
self.__invoke_callbacks()
def __ensure_termination(self):
with self.__mutex:
elapsed_time = self.__auto_cancel()
if not self.__queue.empty():
self.__handle_result(*self.__queue.get_nowait())
elif self.__state < _State.CANCELLED:
remaining_time = self.timeout - elapsed_time
if remaining_time == _math.inf:
remaining_time = None
try:
result = self.__queue.get(True, remaining_time)
except _queue.Empty:
self.cancel()
else:
self.__handle_result(*result)
def result(self):
self.__ensure_termination()
error, value = self.__result
if error:
raise value
return value
def exception(self):
self.__ensure_termination()
error, value = self.__result
if error:
return value
def add_done_callback(self, fn):
if self.done():
fn(self)
else:
self.__callbacks.append(fn)
def _set_running_or_notify_cancel(self):
if self.__state is _State.PENDING:
self.__process.start()
self.__start_time = _time.perf_counter()
else:
self.cancel()
class Executor(_Base):
__slots__ = (
'__futures',
)
def __init__(self, timeout=None):
super().__init__(timeout)
self.__futures = set()
def submit(self, fn, *args, **kwargs):
future = _Future(self.timeout, fn, args, kwargs)
self.__futures.add(future)
future.add_done_callback(self.__futures.remove)
# noinspection PyProtectedMember
future._set_running_or_notify_cancel()
return future
@staticmethod
def __cancel_futures(iterable):
_run_and_catch_loop(map(_operator.attrgetter('cancel'), iterable))
def map(self, fn, *iterables):
futures = tuple(self.submit(fn, *args) for args in zip(*iterables))
def result_iterator():
future_iterator = iter(futures)
try:
for future in future_iterator:
yield future.result()
finally:
self.__cancel_futures(future_iterator)
return result_iterator()
def shutdown(self):
self.__cancel_futures(frozenset(self.__futures))
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.shutdown()
return False
_executor = Executor()
get_timeout = _executor.get_timeout
set_timeout = _executor.set_timeout
submit = _executor.submit
map_ = _executor.map
shutdown = _executor.shutdown
del _executor