在Python中提取多个子矩阵

10 投票
2 回答
1014 浏览
提问于 2025-05-01 05:19

我想从一个稀疏矩阵中提取多个子矩阵,前提是这个矩阵里有多个非零值的区域。

比如说,我有下面这个矩阵:

x = np.array([0,0,0,0,0,0],
             [0,1,1,0,0,0],
             [0,1,1,0,0,1],
             [0,0,0,0,1,1],
             [0,0,0,0,1,0])

然后我需要提取出那些非零值的区域,也就是:

x_1 = [[1,1]
       [1,1]]

还有:

x_2 = [[0,1],
       [1,1],
       [1,0]]

我之前一直在用np.where()来找到非零值的索引,并且只返回一个子矩阵的区域,但我该如何扩展这个方法,以便提取出我稀疏矩阵中的所有可能的子区域呢?

谢谢!

暂无标签

2 个回答

3

你可以使用内置的功能来做到这一点。

from scipy.ndimage.measurements import find_objects, label
from scipy.ndimage import generate_binary_structure as gbs

import numpy as np

# create array
x = np.array([[0,0,0,0,0,0],
             [0,1,1,0,0,0],
             [0,1,1,0,0,1],
             [0,0,0,0,1,1],
             [0,0,0,0,1,0]])

# define labeling structure to inlcude adjacent (including diagonal) cells
struc = gbs(2,2)

# generate array of labeled sections labels
x2, numlabels = label(x,struc)

# pull out first group of "ones"
xy1 = find_objects(x2==1)[0]

# pull out second group of "ones"
xy2 = find_objects(x2==2)[0]

现在来测试一下:

>>> x[xy1]
    array([[1, 1],
           [1, 1]])

>>> x[xy2]
    array([[0, 1],
           [1, 1],
           [1, 0]])

太好了!如果你想提取所有的小部分,你可以逐个查看,这样就能知道数组里有多少个不同的组。

7

步骤:

  1. 删除所有边缘的行和列,如果它们全是零。(中间的行和列不动)
  2. 找出所有空的行和列,然后根据这些位置把矩阵分开。这会生成一个矩阵的列表。
  3. 对每个新生成的矩阵,重复这个过程,直到不能再分割为止。

代码:

def delrc(arr):
    while True:     # delete leading rows with all zeros
    if np.all(arr[0]==0):
        arr=np.delete(arr,0,axis=0)
    else: break
    while True:     # delete trailing rows with all zeros
    if np.all(arr[-1]==0):
        arr=np.delete(arr,-1,axis=0)
    else: break
    while True:     # delete leading cols with all zeros
    if np.all(arr[:,0]==0):
        arr=np.delete(arr,0,axis=1)
    else: break
    while True:     # delete trailing cols with all zeros
    if np.all(arr[:,-1]==0):
        arr=np.delete(arr,-1,axis=1)
    else: break
    return arr

def rcsplit(arr):
    if np.all(arr==0): return []    # if all zeros return
    global  res
    arr = delrc(arr)        # delete leading/trailing rows/cols with all zeros
    print arr
    indr = np.where(np.all(arr==0,axis=1))[0]
    indc = np.where(np.all(arr==0,axis=0))[0]
    if not indr and not indc:   # If no further split possible return
    res.append(arr)
    return
    arr=np.delete(arr,indr,axis=0)  #delete empty rows in between non empty rows
    arr=np.delete(arr,indc,axis=1)  #delete empty cols in between non empty cols
    arr=np.split(arr,indc,axis=1)   # split on empty (all zeros) cols 
    print arr
    arr2=[]
    for i in arr:
    z=delrc(i)  
    arr2.extend(np.split(z,indr,axis=0))   # split on empty (all zeros) rows
    for i in arr2:
    rcsplit(np.array(i))        # recursive split again no further splitting is possible

if __name__=="__main__":

    import numpy as np 
    res = []   
    arr = np.array([[0,0,0,0,0,0],
        [0,1,1,0,0,0],
        [0,1,1,0,0,1],
        [0,0,0,0,1,1],
        [0,0,0,0,1,0]])
    rcsplit(arr)
    for i in res: print i

撰写回答