根据轮廓颜色给点上色
有没有办法让一个点的颜色根据contour
函数使用的颜色映射来决定呢?我知道我可以指定一个颜色映射,但我想contour
函数可能会对数据进行一些缩放和/或归一化处理吧?
这里有个例子:
import numpy as np
import scipy.stats as ss
def plot_2d_probsurface(data, resolution=20, ax = None, xlim=None, ylim=None):
# create a function to calcualte the density at a particular location
kde = ss.gaussian_kde(data.T)
# calculate the limits if there are no values passed in
# passed in values are useful if calling this function
# systematically with different sets of data whose limits
# aren't consistent
if xlim is None:
xlim = (min(data[:,0]), max(data[:,0]))
if ylim is None:
ylim = (min(data[:,1]), max(data[:,1]))
# create some tick marks that will be used to create a grid
xs = np.linspace(xlim[0], xlim[1], resolution)
ys = np.linspace(ylim[0], ylim[1], resolution)
# wrap the KDE function and vectorize it so that we can call it on
# the entire grid at once
def calc_prob(x,y):
return kde([x,y])[0]
calc_prob = vectorize(calc_prob)
# check if we've received a plotting surface
if ax is None:
fig = plt.figure(figsize=(6,6))
ax = fig.add_subplot(1,1,1)
# create the grid and calculate the density at each point
X,Y = np.meshgrid(xs, ys)
Z = calc_prob(X,Y)
# the values according to which the points should be colored
point_values = kde(data.T)
# plot the contour
cont = ax.contour(X,Y,Z)
#print cont
ax.plot(data[:,0], data[:,1], 'o')
return (None, None)
data_x = np.random.random((50,2))
cont = plot_2d_probsurface(data_x)
在下面的图中,密度最高的点会被涂成棕色,接下来的点是橙色,再接下来是黄色,依此类推……根据point_values
中的值,点的颜色已经确定了。现在只需要把这些值转换成颜色,然后传递给plot
函数。但是我该怎么像在contour
图中那样对它们进行缩放呢?
1 个回答
5
看起来只需要把 plot
改成 scatter
,然后把点的数值作为 c=point_values
的参数传进去就可以了:
import numpy as np
import scipy.stats as ss
def plot_2d_probsurface(data, resolution=20, ax = None, xlim=None, ylim=None):
# create a function to calcualte the density at a particular location
kde = ss.gaussian_kde(data.T)
# calculate the limits if there are no values passed in
# passed in values are useful if calling this function
# systematically with different sets of data whose limits
# aren't consistent
if xlim is None:
xlim = (min(data[:,0]), max(data[:,0]))
if ylim is None:
ylim = (min(data[:,1]), max(data[:,1]))
# create some tick marks that will be used to create a grid
xs = np.linspace(xlim[0], xlim[1], resolution)
ys = np.linspace(ylim[0], ylim[1], resolution)
# wrap the KDE function and vectorize it so that we can call it on
# the entire grid at once
def calc_prob(x,y):
return kde([x,y])[0]
calc_prob = vectorize(calc_prob)
# check if we've received a plotting surface
if ax is None:
fig = plt.figure(figsize=(6,6))
ax = fig.add_subplot(1,1,1)
# create the grid and calculate the density at each point
X,Y = np.meshgrid(xs, ys)
Z = calc_prob(X,Y)
# plot the contour
cont = ax.contour(X,Y,Z)
point_values = kde(data.T)
print point_values
#print cont
ax.scatter(data[:,0], data[:,1], c=point_values)
return (None, None)
data_x = np.random.random((50,2))
cont = plot_2d_probsurface(data_x)
这样就能得到这个结果: