可以用“普通”python将numpy数组保存为16位图像吗?

16 投票
5 回答
24757 浏览
提问于 2025-04-20 03:14

有没有办法用常见的Python库把一个numpy数组保存为16位的图像(比如tif或png格式)呢?我以前用过的这个方法,但需要安装FreeImage这个库,感觉有点麻烦。

这看起来是个很基础的任务,所以我觉得应该有scipy来处理这个问题,但scipy.misc.imsave只支持8位的图像。

有没有什么好主意呢?

5 个回答

0

我写了一个自定义脚本,只用到了numpy和OpenCV来完成这个任务:
(不过感觉这方法有点过于复杂了…)

import numpy as np
import cv2

def save_gray_deep_bits(filepath, float_array, bitdepth=16):
    assert bitdepth in [8,16,24]
    arr = np.squeeze(float_array)
    assert len(arr.shape) == 2
    assert '.png' in filepath

    bit_iterations = int(bitdepth/8)
    img_bgr = np.zeros((*arr.shape, 3), np.uint8)
    encoded = np.zeros(arr.shape, np.uint8)

    for i in range(bit_iterations):
        residual = float_array - encoded
        plane_i = (residual*(256**i)).astype(np.uint8)
        img_bgr[:,:,i] = plane_i
        encoded += plane_i

    cv2.imwrite(filepath, img_bgr)
    return img_bgr

def bgr_to_gray_deep_bits(bgr_array, bitdepth=16):
    gray = np.zeros((bgr_array.shape[0], bgr_array.shape[1]), dtype = np.float32)
    for i in range(int(bitdepth/8)):
        gray += bgr_array[:,:,i] / float(256**i)
    return gray

def load_gray_deep_bits(filepath, bitdepth=16):
    bgr_image = cv2.imread('test.png').astype(np.float64)
    gray_reconstructed = bgr_to_gray_deep_bits(bgr_image, bitdepth = bd)
    return gray_reconstructed

bd = 24
gray_image_full_precision = np.random.rand(1024, 1024)*255.
save_gray_deep_bits('test.png', gray_image_full_precision, bitdepth = bd)

# Read image and check if our array is restored without losing precision
bgr_image = cv2.imread('test.png').astype(np.float64)
gray_reconstructed = bgr_to_gray_deep_bits(bgr_image, bitdepth = bd)
avg_residual = np.mean(np.abs(gray_reconstructed - gray_image_full_precision))
print("avg pixel residual: %.3f" %avg_residual)
0

如前所述,PyPNG非常有用。对于Enthought的用户,可以通过以下方式安装:

conda install -c eaton-lab pypng

我会使用库里的from_array方法:

import png
import numpy as np

bit_depth = 16

my_array = np.ones((800, 800, 3)) 

png.from_array(my_array*2**bit_depth-1, 'RGB;%s'%bit_depth).save('foo.png')

模式使用的是PIL风格的格式,比如'L'、'LA'、'RGB'或者'RGBA',后面可以加上';16'或';8'来设置位深。如果不指定位深,就会使用数组的dtype。

想了解更多,可以点击 这里

1

你可以把你的16位数组转换成一个双通道的图像(或者把24位数组转换成一个三通道的图像)。像下面这样的代码就可以很好地实现这个功能,只需要用到numpy这个库:

import numpy as np
arr = np.random.randint(0, 2 ** 16, (128, 128), dtype=np.uint16)  # 16-bit array
print(arr.min(), arr.max(), arr.dtype)
img_bgr = np.zeros((*arr.shape, 3), np.int)
img_bgr[:, :, 0] = arr // 256
img_bgr[:, :, 1] = arr % 256
cv2.imwrite('arr.png', img_bgr)
# Read image and check if our array is restored without losing precision
img_bgr_read = cv2.imread('arr.png')
B, G, R = np.split(img_bgr_read, [1, 2], 2)
arr_read = (B * 256 + G).astype(np.uint16).squeeze()
print(np.allclose(arr, arr_read), np.max(np.abs(arr_read - arr)))

结果:

0 65523 uint16
True 0
6

这段关于png和numpngw的解释非常有帮助!不过,我觉得有一个小“错误”需要提一下。在把数据转换成16位无符号整数时,y.max()应该用y.min()。对于随机颜色的图片,这个问题不大,但如果是处理真实的图片,我们就得认真对待。下面是修正后的代码行……

z = (65535*((y - y.min())/y.ptp())).astype(np.uint16)
22

一个替代方案是使用 pypng。你还是需要安装另一个包,但它是纯Python写的,所以应该很简单。(其实在pypng的源代码里有一个Cython文件,但用不使用它是可选的。)

下面是一个使用pypng将numpy数组写入PNG文件的例子:

import png

import numpy as np

# The following import is just for creating an interesting array
# of data.  It is not necessary for writing a PNG file with PyPNG.
from scipy.ndimage import gaussian_filter


# Make an image in a numpy array for this demonstration.
nrows = 240
ncols = 320
np.random.seed(12345)
x = np.random.randn(nrows, ncols, 3)

# y is our floating point demonstration data.
y = gaussian_filter(x, (16, 16, 0))

# Convert y to 16 bit unsigned integers.
z = (65535*((y - y.min())/y.ptp())).astype(np.uint16)

# Use pypng to write z as a color PNG.
with open('foo_color.png', 'wb') as f:
    writer = png.Writer(width=z.shape[1], height=z.shape[0], bitdepth=16,
                        greyscale=False)
    # Convert z to the Python list of lists expected by
    # the png writer.
    z2list = z.reshape(-1, z.shape[1]*z.shape[2]).tolist()
    writer.write(f, z2list)

# Here's a grayscale example.
zgray = z[:, :, 0]

# Use pypng to write zgray as a grayscale PNG.
with open('foo_gray.png', 'wb') as f:
    writer = png.Writer(width=z.shape[1], height=z.shape[0], bitdepth=16,
                        greyscale=True)
    zgray2list = zgray.tolist()
    writer.write(f, zgray2list)

这是彩色输出:

foo_color.png

这是灰度输出:

foo_gray.png


更新:我创建了一个叫 numpngw 的库(可以在 PyPIgithub 找到),它提供了一个函数,可以将numpy数组写入PNG文件。这个库里有一个 setup.py 文件,可以用来安装它,但核心代码在一个单独的文件 numpngw.py 中,你可以把它复制到任何方便的地方。numpngw 只依赖于numpy。

下面是一个生成和上面相同的16位图像的脚本:

import numpy as np
import numpngw

# The following import is just for creating an interesting array
# of data.  It is not necessary for writing a PNG file.
from scipy.ndimage import gaussian_filter


# Make an image in a numpy array for this demonstration.
nrows = 240
ncols = 320
np.random.seed(12345)
x = np.random.randn(nrows, ncols, 3)

# y is our floating point demonstration data.
y = gaussian_filter(x, (16, 16, 0))

# Convert y to 16 bit unsigned integers.
z = (65535*((y - y.min())/y.ptp())).astype(np.uint16)

# Use numpngw to write z as a color PNG.
numpngw.write_png('foo_color.png', z)

# Here's a grayscale example.
zgray = z[:, :, 0]

# Use numpngw to write zgray as a grayscale PNG.
numpngw.write_png('foo_gray.png', zgray)

撰写回答