这些用于检测有限文法歧义的Python程序正确吗?

5 投票
1 回答
1851 浏览
提问于 2025-04-19 09:04

我最近在学习Udacity的CS262课程,关于检测歧义的问题,我不太确定我的解决方案是否正确,也不确定“官方”解决方案是否正确。

问题的简单描述是:写一个函数isambig(grammar, start, string),这个函数接受一个有限的上下文无关文法(用Python字典表示)、文法的起始符号和一个字符串。如果有两棵解析树可以生成这个字符串,那么这个文法就是歧义的(至少这是我对歧义的理解,如果我错了请纠正我)。如果文法是歧义的,就返回True;否则返回False。

测试案例:

grammar1 = [
       ("S", [ "P", ]),
       ("S", [ "a", "Q", ]) ,
       ("P", [ "a", "T"]),
       ("P", [ "c" ]),
       ("Q", [ "b" ]),
       ("T", [ "b" ]),
       ]
print isambig(grammar1, "S", ["a", "b"]) == True
print isambig(grammar1, "S", ["c"]) == False

grammar2 = [
       ("A", [ "B", ]),
       ("B", [ "C", ]),
       ("C", [ "D", ]),
       ("D", [ "E", ]),
       ("E", [ "F", ]),
       ("E", [ "G", ]),
       ("E", [ "x", "H", ]),
       ("F", [ "x", "H"]),
       ("G", [ "x", "H"]),
       ("H", [ "y", ]),
       ]
print isambig(grammar2, "A", ["x", "y"]) == True
print isambig(grammar2, "E", ["y"]) == False

grammar3 = [ # Rivers in Kenya
       ("A", [ "B", "C"]),
       ("A", [ "D", ]),
       ("B", [ "Dawa", ]),
       ("C", [ "Gucha", ]),
       ("D", [ "B", "Gucha"]),
       ("A", [ "E", "Mbagathi"]),
       ("A", [ "F", "Nairobi"]),
       ("E", [ "Tsavo" ]),
       ("F", [ "Dawa", "Gucha" ])
       ]
print isambig(grammar3, "A", ["Dawa", "Gucha"]) == True
print isambig(grammar3, "A", ["Dawa", "Gucha", "Nairobi"]) == False
print isambig(grammar3, "A", ["Tsavo"]) == False

我添加了自己的测试案例。我不确定这是否正确,但我只看到一棵解析树可以生成字符串“a b”,所以这个字符串并不能证明文法是歧义的。我也不认为这个文法是歧义的。

grammar4 = [ # Simple test case
       ("S", [ "P", "Q"]),
       ("P", [ "a", ]),
       ("Q", [ "b", ]),
       ]
print isambig(grammar4, "S", ["a", "b"]) == False

这是“官方”的程序:

def expand(tokens_and_derivation, grammar):
    (tokens,derivation) = tokens_and_derivation
    for token_pos in range(len(tokens)):
        for rule_index in range(len(grammar)):
            rule = grammar[rule_index]
            if tokens[token_pos] == rule[0]:
                yield ((tokens[0:token_pos] + rule[1] + tokens[token_pos+1:]), derivation + [rule_index])

def isambig(grammar, start, utterance):
    enumerated = [([start], [])]
    while True:
        new_enumerated = enumerated
        for u in enumerated:
            for i in expand(u,grammar):
                if not i in new_enumerated:
                    new_enumerated = new_enumerated + [i]

        if new_enumerated != enumerated:
            enumerated = new_enumerated
        else:
            break
    result = [xrange for xrange in enumerated if xrange[0] == utterance]
    print result
    return len(result) > 1

这是我自己写的,程序要长得多:

def expand(grammar, symbol):
    result = []
    for rule in grammar:
        if rule[0] == symbol:
            result.append(rule[1])
    return result

def expand_first_nonterminal(grammar, string):
    result = []
    for i in xrange(len(string)):
        if isterminal(grammar, string[i]) == False:
            for j in expand(grammar, string[i]):
                result.append(string[:i]+j+string[i+1:])
            return result
    return None

def full_expand_string(grammar,string, result):
    for i in expand_first_nonterminal(grammar,string):
        if allterminals(grammar,i):
            result.append(i)
        else:
            full_expand_string(grammar,i,result)

def isterminal(grammar,symbol):
    for rule in grammar:
        if rule[0] == symbol:
            return False
    return True

def allterminals(grammar,string):
    for symbol in string:
        if isterminal(grammar,symbol) == False:
            return False
    return True

def returnall(grammar, start):
    result = []
    for rule in grammar:
        if rule[0] == start:
            if allterminals(grammar,rule[1]):
                return rule[1]
            else:
                full_expand_string(grammar, rule[1], result)
    return result

def isambig(grammar, start, utterance):
    count = 0
    for i in returnall(grammar,start):
        if i == utterance:
            count+=1
    if count > 1:
        return True
    else:
        return False

现在,我的程序通过了所有的测试案例,包括我添加的那个(grammar4),但官方的解决方案通过了所有测试案例,除了我添加的那个。对我来说,要么是测试案例有问题,要么是官方的解决方案有问题。

官方的解决方案正确吗?我的解决方案正确吗?

1 个回答

2

在我看来,grammar4 这个语法是没有歧义的。它只有一棵解析树:

S -> PQ
P -> a
Q -> b

    S
    |
 ___|____
P        Q
|        |
a        b

不过,官方程序却说它是有歧义的,因为它连续使用了规则 P -> aQ -> b

[(['a', 'b'], [0, 1, 2]), (['a', 'b'], [0, 2, 1])]

(现在有两个规则序列 0,1,20,2,1。)

所以这个“官方”的程序似乎错误地把 grammar4 检测成了有歧义。

更新:我查看了你的代码并做了一些测试,除了没有处理递归(官方版本也不处理递归)之外,你的程序似乎能正确区分有歧义和没有歧义的情况。

简单测试:

grammar5 = [ 
             ("S", ["A", "B"]),
             ("S", ["B", "A"]),
             ("A", ["a"]),
             ("B", ["a"]),
           ]   
print(isambig(grammar5, "S", ["a", "a"]))

S -> AB
S -> BA
A -> a
B -> a

    S
    |
 ___|____
A        B
|        |
a        a

    S
    |
 ___|____
B        A
|        |
a        a

你的版本返回“有歧义”(官方版本也是如此)。

如果你去掉 ("S", ["B", "A"]),你的版本就能正确地切换到“没有歧义”,而另一个版本仍然返回“有歧义”(我们又回到了 grammar4 的情况)。

也许其他人(比我更有经验的人)可以参与讨论。

更新 2:Ira Baxter 提到,判断一个上下文无关语法是否有歧义是一个不可判定的问题。

另见 如何证明一个上下文无关语言是不可判定的?

撰写回答