Python 多进程同步
我有一个叫“function”的函数,我想用两个5核的CPU把它调用10次,想用多进程来实现。
所以我需要一种方法来同步这些进程,下面的代码就是我想要的样子。
我想知道有没有办法不使用多进程池来做到这一点?如果不这样做,我会遇到奇怪的错误,比如“UnboundLocalError: local variable 'fd' referenced before assignment”(我根本没有这个变量)。而且这些进程似乎会随机终止。
如果可以的话,我希望不使用池来实现。谢谢!
number_of_cpus = 5
number_of_iterations = 2
# An array for the processes.
processing_jobs = []
# Start 5 processes 2 times.
for iteration in range(0, number_of_iterations):
# TODO SYNCHRONIZE HERE
# Start 5 processes at a time.
for cpu_number in range(0, number_of_cpus):
# Calculate an offset for the current function call.
file_offset = iteration * cpu_number * number_of_files_per_process
p = multiprocessing.Process(target=function, args=(file_offset,))
processing_jobs.append(p)
p.start()
# TODO SYNCHRONIZE HERE
这是我在使用池运行代码时遇到的错误的(匿名化)追踪信息:
Process Process-5:
Traceback (most recent call last):
File "/usr/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "/usr/lib/python2.7/multiprocessing/process.py", line 114, in run
self._target(*self._args, **self._kwargs)
File "python_code_3.py", line 88, in function_x
xyz = python_code_1.function_y(args)
File "/python_code_1.py", line 254, in __init__
self.WK = file.WK(filename)
File "/python_code_2.py", line 1754, in __init__
self.__parse__(name, data, fast_load)
File "/python_code_2.py", line 1810, in __parse__
fd.close()
UnboundLocalError: local variable 'fd' referenced before assignment
大部分进程都是这样崩溃的,但不是全部。当我增加进程数量时,崩溃的情况似乎更多。我还想这可能是因为内存限制的问题……
2 个回答
1
一个Pool(池)使用起来非常简单。下面是一个完整的例子:
源代码
import multiprocessing
def calc(num):
return num*2
if __name__=='__main__': # required for Windows
pool = multiprocessing.Pool() # one Process per CPU
for output in pool.map(calc, [1,2,3]):
print 'output:',output
输出结果
output: 2
output: 4
output: 6
1
这里有一种方法,可以让你实现想要的同步,而不需要使用池:
import multiprocessing
def function(arg):
print ("got arg %s" % arg)
if __name__ == "__main__":
number_of_cpus = 5
number_of_iterations = 2
# An array for the processes.
processing_jobs = []
# Start 5 processes 2 times.
for iteration in range(1, number_of_iterations+1): # Start the range from 1 so we don't multiply by zero.
# Start 5 processes at a time.
for cpu_number in range(1, number_of_cpus+1):
# Calculate an offset for the current function call.
file_offset = iteration * cpu_number * number_of_files_per_process
p = multiprocessing.Process(target=function, args=(file_offset,))
processing_jobs.append(p)
p.start()
# Wait for all processes to finish.
for proc in processing_jobs:
proc.join()
# Empty active job list.
del processing_jobs[:]
# Write file here
print("Writing")
这是使用了一个 Pool
的版本:
import multiprocessing
def function(arg):
print ("got arg %s" % arg)
if __name__ == "__main__":
number_of_cpus = 5
number_of_iterations = 2
pool = multiprocessing.Pool(number_of_cpus)
for i in range(1, number_of_iterations+1): # Start the range from 1 so we don't multiply by zero
file_offsets = [number_of_files_per_process * i * cpu_num for cpu_num in range(1, number_of_cpus+1)]
pool.map(function, file_offsets)
print("Writing")
# Write file here
正如你所看到的,使用 Pool
的方案看起来更好。
不过,这并没有解决你的追踪问题。要解决这个问题,我很难说该怎么做,因为我不太清楚到底是什么导致了这个问题。你可能需要使用 multiprocessing.Lock
来同步对资源的访问。