在Pandas DataFrame中按条件合并行
我有一个数据表(df),最开始是从一个Excel文件里来的,前9行数据长这样:
Control Recd_Date/Due_Date Action Signature/Requester
0 2000-1703 2000-01-31 00:00:00 OC/OER/OPA/PMS/ M WEBB
1 NaN 2000-02-29 00:00:00 NaN DATA CORP
2 2000-1776 2000-01-02 00:00:00 OC/ORA/OE/DCP/ G KAN
3 NaN 2000-01-03 00:00:00 OC/ORA/ORO/PNC/ PALM POST
4 NaN NaN FDA/OGROP/ORA/SE-FO/FLA- NaN
5 NaN NaN DO/FLA-CB/ NaN
6 2000-1983 2000-02-02 00:00:00 FDA/OGROP/ORA/CE-FO/CHI- M EGAN
7 NaN 2000-02-03 00:00:00 DO/CHI-CB/ BERNSTEIN LIEBHARD &
8 NaN NaN NaN LONDON LLP
- df['Control'][1]的类型是浮点数(float);
- df['Recd_Date/Due_Date'][1]的类型是日期时间(datetime.datetime);
- df['Action_Office'][1]的类型是浮点数(float);
- df['Signature/Requester'][1]的类型是Unicode字符串(unicode)。
我想把这个数据表(比如说前9行)转换成这样:
Control Recd_Date/Due_Date Action Signature/Requester
0 2000-1703 2000-01-31 00:00:00,2000-02-29 00:00:00 OC/OER/OPA/PMS/ M WEBB,DATA CORP
1 2000-1776 2000-01-02 00:00:00,2000-01-03 00:00:00 OC/ORA/OE/DCP/OC/ORA/ORO/PNC/FDA/OGROP/ORA/SE-FO/FLA-DO/FLA-CB/ G KAN,PALM POST
2 2000-1983 2000-02-02 00:00:00,2000-02-03 00:00:00 FDA/OGROP/ORA/CE-FO/CHI-DO/CHI-CB/ M EGAN,BERNSTEIN LIEBHARD & LONDON LLP
简单来说:
- 每当pd.isnull(row['Control'])这个条件为真时,就把这一行和上一行合并(上一行的'Control'值不能是空)。
- 对于'Recd_Date/Due_Date'和'Signature/Requester',在两个合并的行的每两个值之间加上','(或者'/'),比如说'2000-01-31 00:00:00,2000-02-29 00:00:00'和'G KAN,PALM POST'。
- 对于'Action',直接合并,不加任何标点符号,比如说FDA/OGROP/ORA/CE-FO/CHI-DO/CHI-CB/。
有没有人能帮我一下?这是我正在尝试的代码:
for i, row in df.iterrows():
if pd.isnull(df.ix[i]['Control_#']):
df.ix[i-1]['Recd_Date/Due_Date'] = str(df.ix[i-1]['Recd_Date/Due_Date'])+'/'+str(df.ix[i]['Recd_Date/Due_Date'])
df.ix[i-1]['Subject'] = str(df.ix[i-1]['Subject'])+' '+str(df.ix[i]['Subject'])
if str(df.ix[i-1]['Action_Office'])[-1] == '-':
df.ix[i-1]['Action_Office'] = str(df.ix[i-1]['Action_Office'])+str(df.ix[i]['Action_Office'])
else:
df.ix[i-1]['Action_Office'] = str(df.ix[i-1]['Action_Office'])+','+str(df.ix[i]['Action_Office'])
if pd.isnull(df.ix[i-1]['Signature/Requester']):
df.ix[i-1]['Signature/Requester'] = str(df.ix[i-1]['Signature/Requester'])+str(df.ix[i]['Signature/Requester'])
elif str(df.ix[i-1]['Signature/Requester'])[-1] == '&':
df.ix[i-1]['Signature/Requester'] = str(df.ix[i-1]['Signature/Requester'])+' '+str(df.ix[i]['Signature/Requester'])
else:
df.ix[i-1]['Signature/Requester'] = str(df.ix[i-1]['Signature/Requester'])+','+str(df.ix[i]['Signature/Requester'])
df.drop(df.index[i])
为什么drop()不管用呢?我想删除当前行(如果它的['Control_#']是空的),这样下一行(如果它的['Control_#']也是空的)就可以和上一行(它的['Control_#']不是空的)合并,反复进行。
非常感谢!!
1 个回答
6
我觉得你需要把行分组,然后把列的值连接起来。比较棘手的部分是找到一种方法来按照你想要的方式分组行。下面是我的解决方案……
1) 行的分组:静态变量
因为你的分组依赖于行中的顺序,所以我在一个方法里用了一个静态变量来给每一行标记一个特定的组。
def rolling_group(val):
if pd.notnull(val): rolling_group.group +=1 #pd.notnull is signal to switch group
return rolling_group.group
rolling_group.group = 0 #static variable
这个方法应用在控制系列上,用来把索引排序成组,然后用来拆分数据框,这样你就可以合并行了。
#groups = df.groupby(df['Control'].apply(rolling_group),as_index=False)
其实这就是唯一棘手的部分,之后你只需要对每个组应用一个函数,就能合并行,得到你想要的结果。
完整的解决方案代码
def rolling_group(val):
if pd.notnull(val): rolling_group.group +=1 #pd.notnull is signal to switch group
return rolling_group.group
rolling_group.group = 0 #static variable
def joinFunc(g,column):
col =g[column]
joiner = "/" if column == "Action" else ","
s = joiner.join([str(each) for each in col if pd.notnull(each)])
s = re.sub("(?<=&)"+joiner," ",s) #joiner = " "
s = re.sub("(?<=-)"+joiner,"",s) #joiner = ""
s = re.sub(joiner*2,joiner,s) #fixes double joiner condition
return s
#在上面编辑 - str(each) - 将其转换为字符串... 编辑上面的正则表达式以清理连接字符串
if __name__ == "__main__":
df = """ Control Recd_Date/Due_Date Action Signature/Requester
0 2000-1703 2000-01-31 00:00:00 OC/OER/OPA/PMS/ M WEBB
1 NaN 2000-02-29 00:00:00 NaN DATA CORP
2 2000-1776 2000-01-02 00:00:00 OC/ORA/OE/DCP/ G KAN
3 NaN 2000-01-03 00:00:00 OC/ORA/ORO/PNC/ PALM POST
4 NaN NaN FDA/OGROP/ORA/SE-FO/FLA- NaN
5 NaN NaN DO/FLA-CB/ NaN
6 2000-1983 2000-02-02 00:00:00 FDA/OGROP/ORA/CE-FO/CHI- M EGAN
7 NaN 2000-02-03 00:00:00 DO/CHI-CB/ BERNSTEIN LIEBHARD &
8 NaN NaN NaN LONDON LLP"""
df = pd.read_csv(StringIO.StringIO(df),sep = "\s\s+",engine='python')
groups = df.groupby(df['Control'].apply(rolling_group),as_index=False)
groupFunct = lambda g: pd.Series([joinFunc(g,col) for col in g.columns],index=g.columns)
print groups.apply(groupFunct)
输出
Control Recd_Date/Due_Date \
0 2000-1703 2000-01-31 00:00:00,2000-02-29 00:00:00
1 2000-1776 2000-01-02 00:00:00,2000-01-03 00:00:00
2 2000-1983 2000-02-02 00:00:00,2000-02-03 00:00:00
Action \
0 OC/OER/OPA/PMS/
1 OC/ORA/OE/DCP/OC/ORA/ORO/PNC/FDA/OGROP/ORA/SE-...
2 FDA/OGROP/ORA/CE-FO/CHI-DO/CHI-CB/
Signature/Requester
0 M WEBB,DATA CORP
1 G KAN,PALM POST
2 M EGAN,BERNSTEIN LIEBHARD & LONDON LLP