Pandas - 计算所有列的z-score

79 投票
9 回答
236141 浏览
提问于 2025-04-18 13:25

我有一个数据表,里面有一列是ID,其他的列都是一些数字,我想计算这些数字的z-score(标准分)。下面是这个数据表的一部分:

ID      Age    BMI    Risk Factor
PT 6    48     19.3    4
PT 8    43     20.9    NaN
PT 2    39     18.1    3
PT 9    41     19.5    NaN

我的一些列里面有NaN值(也就是缺失值),我不想把这些NaN值算进z-score的计算里,所以我打算用一个解决方案,具体可以参考这个问题: 如何在有NaN的情况下计算pandas列的z-score?

df['zscore'] = (df.a - df.a.mean())/df.a.std(ddof=0)

我想把这个解决方案应用到除了ID列以外的所有列上,生成一个新的数据表,然后我可以把这个新数据表保存为Excel文件,方法是:

df2.to_excel("Z-Scores.xlsx")

简单来说,我想知道怎么计算每一列的z-score(忽略NaN值),然后把所有结果放到一个新的数据表里?

附注:在pandas中有个叫“索引”的概念,这让我有点害怕,因为我不太理解。如果索引是解决这个问题的关键部分,请把索引的解释简单化一些。

9 个回答

7

关于Z分数,我们可以参考文档,而不是使用'apply'函数。

from scipy.stats import zscore
df_zscore = zscore(cols as array, axis=1)
8

这里有另一种通过自定义函数来计算Z分数的方法:

In [6]: import pandas as pd; import numpy as np

In [7]: np.random.seed(0) # Fixes the random seed

In [8]: df = pd.DataFrame(np.random.randn(5,3), columns=["randomA", "randomB","randomC"])

In [9]: df # watch output of dataframe
Out[9]:
    randomA   randomB   randomC
0  1.764052  0.400157  0.978738
1  2.240893  1.867558 -0.977278
2  0.950088 -0.151357 -0.103219
3  0.410599  0.144044  1.454274
4  0.761038  0.121675  0.443863

## Create custom function to compute Zscore 
In [10]: def z_score(df):
   ....:         df.columns = [x + "_zscore" for x in df.columns.tolist()]
   ....:         return ((df - df.mean())/df.std(ddof=0))
   ....:

## make sure you filter or select columns of interest before passing dataframe to function
In [11]: z_score(df) # compute Zscore
Out[11]:
   randomA_zscore  randomB_zscore  randomC_zscore
0        0.798350       -0.106335        0.731041
1        1.505002        1.939828       -1.577295
2       -0.407899       -0.875374       -0.545799
3       -1.207392       -0.463464        1.292230
4       -0.688061       -0.494655        0.099824

使用scipy.stats的zscore得到的结果

In [12]: from scipy.stats import zscore

In [13]: df.apply(zscore) # (Credit: Manuel)
Out[13]:
    randomA   randomB   randomC
0  0.798350 -0.106335  0.731041
1  1.505002  1.939828 -1.577295
2 -0.407899 -0.875374 -0.545799
3 -1.207392 -0.463464  1.292230
4 -0.688061 -0.494655  0.099824
29

如果你想计算所有列的z-score,可以直接使用下面的代码:

df_zscore = (df - df.mean())/df.std()
108

使用 Scipy的zscore 函数:

df = pd.DataFrame(np.random.randint(100, 200, size=(5, 3)), columns=['A', 'B', 'C'])
df

|    |   A |   B |   C |
|---:|----:|----:|----:|
|  0 | 163 | 163 | 159 |
|  1 | 120 | 153 | 181 |
|  2 | 130 | 199 | 108 |
|  3 | 108 | 188 | 157 |
|  4 | 109 | 171 | 119 |

from scipy.stats import zscore
df.apply(zscore)

|    |         A |         B |         C |
|---:|----------:|----------:|----------:|
|  0 |  1.83447  | -0.708023 |  0.523362 |
|  1 | -0.297482 | -1.30804  |  1.3342   |
|  2 |  0.198321 |  1.45205  | -1.35632  |
|  3 | -0.892446 |  0.792025 |  0.449649 |
|  4 | -0.842866 | -0.228007 | -0.950897 |

如果你的数据表中并不是所有的列都是数字类型,那么你可以通过 select_dtypes 函数只对数字列应用Z-score函数:

# Note that `select_dtypes` returns a data frame. We are selecting only the columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
df[numeric_cols].apply(zscore)

|    |         A |         B |         C |
|---:|----------:|----------:|----------:|
|  0 |  1.83447  | -0.708023 |  0.523362 |
|  1 | -0.297482 | -1.30804  |  1.3342   |
|  2 |  0.198321 |  1.45205  | -1.35632  |
|  3 | -0.892446 |  0.792025 |  0.449649 |
|  4 | -0.842866 | -0.228007 | -0.950897 |
94

从这些列中建立一个列表,然后把你不想计算Z分数的那一列去掉:

In [66]:
cols = list(df.columns)
cols.remove('ID')
df[cols]

Out[66]:
   Age  BMI  Risk  Factor
0    6   48  19.3       4
1    8   43  20.9     NaN
2    2   39  18.1       3
3    9   41  19.5     NaN
In [68]:
# now iterate over the remaining columns and create a new zscore column
for col in cols:
    col_zscore = col + '_zscore'
    df[col_zscore] = (df[col] - df[col].mean())/df[col].std(ddof=0)
df
Out[68]:
   ID  Age  BMI  Risk  Factor  Age_zscore  BMI_zscore  Risk_zscore  \
0  PT    6   48  19.3       4   -0.093250    1.569614    -0.150946   
1  PT    8   43  20.9     NaN    0.652753    0.074744     1.459148   
2  PT    2   39  18.1       3   -1.585258   -1.121153    -1.358517   
3  PT    9   41  19.5     NaN    1.025755   -0.523205     0.050315   

   Factor_zscore  
0              1  
1            NaN  
2             -1  
3            NaN  

撰写回答