在scikit-learn中,是否可以对自定义核进行网格搜索调参?
我有一个自定义的核函数,并且我正在使用GridSearchCV函数来搭配SVC(支持向量分类器),其中使用了我的核函数my_kernel。
这个my_kernel函数需要一个参数k来进行调整,所以我在想,是否可以设置param_grid选项来调整我自定义核函数的参数。
比如,对于RBF核函数,可以像下面这样调整gamma参数。那么,我能否为我的自定义核函数提供一个类似param_grid=dict(k=k_range)的选项呢?
gamma_range = 10. ** np.arange(-5, 4)
param_grid = dict(gamma=gamma_range)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=StratifiedKFold(y=Y, k=5))
3 个回答
0
在这个问题中提到过……那我们可以考虑使用auto-sklearn来自动调整参数吗?它可以直接替代sklearn,而且通常情况下,它的表现比手动调整参数要好。
1
在scikit-learn 0.19版本中,你可以这样做:
from sklearn.kernel_ridge import KernelRidge
from sklearn.metrics.pairwise import chi2_kernel
reg_kridge=KernelRidge(kernel='chi2')
params_grid={"gamma":np.logspace(0,-4,5)}
reg=GridSearchCV(reg_kridge,params_grid, n_jobs=-1,cv=10,scoring='neg_mean_squared_error')
reg.fit(train, target)
12
一种实现这个功能的方法是使用 Pipeline
,SVC(kernel='precomputed')
,并将你自定义的核函数包装成一个 sklearn
的估计器(也就是 BaseEstimator
和 TransformerMixin
的子类)。
举个例子,sklearn
里有一个 自定义核函数 chi2_kernel(X, Y=None, gamma=1.0)
,它可以计算特征向量 X
和 Y
的核矩阵。这个函数有一个参数 gamma
,最好通过交叉验证来设置这个参数。我们可以对这个函数的参数进行网格搜索,方法如下:
from __future__ import print_function
from __future__ import division
import sys
import numpy as np
import sklearn
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_digits
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.metrics.pairwise import chi2_kernel
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
# Wrapper class for the custom kernel chi2_kernel
class Chi2Kernel(BaseEstimator,TransformerMixin):
def __init__(self, gamma=1.0):
super(Chi2Kernel,self).__init__()
self.gamma = gamma
def transform(self, X):
return chi2_kernel(X, self.X_train_, gamma=self.gamma)
def fit(self, X, y=None, **fit_params):
self.X_train_ = X
return self
def main():
print('python: {}'.format(sys.version))
print('numpy: {}'.format(np.__version__))
print('sklearn: {}'.format(sklearn.__version__))
np.random.seed(0)
# Get some data to evaluate
dataset = load_digits()
X = dataset.data
y = dataset.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
# Create a pipeline where our custom predefined kernel Chi2Kernel
# is run before SVC.
pipe = Pipeline([
('chi2', Chi2Kernel()),
('svm', SVC()),
])
# Set the parameter 'gamma' of our custom kernel by
# using the 'estimator__param' syntax.
cv_params = dict([
('chi2__gamma', 10.0**np.arange(-9,4)),
('svm__kernel', ['precomputed']),
('svm__C', 10.0**np.arange(-2,9)),
])
# Do grid search to get the best parameter value of 'gamma'.
model = GridSearchCV(pipe, cv_params, cv=5, verbose=1, n_jobs=-1)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
acc_test = accuracy_score(y_test, y_pred)
print("Test accuracy: {}".format(acc_test))
print("Best params:")
print(model.best_params_)
if __name__ == '__main__':
main()
输出结果:
python: 2.7.3 (default, Dec 18 2014, 19:10:20)
[GCC 4.6.3]
numpy: 1.8.0
sklearn: 0.16.1
Fitting 5 folds for each of 143 candidates, totalling 715 fits
[Parallel(n_jobs=-1)]: Done 1 jobs | elapsed: 0.4s
[Parallel(n_jobs=-1)]: Done 50 jobs | elapsed: 2.7s
[Parallel(n_jobs=-1)]: Done 200 jobs | elapsed: 9.8s
[Parallel(n_jobs=-1)]: Done 450 jobs | elapsed: 21.6s
[Parallel(n_jobs=-1)]: Done 701 out of 715 | elapsed: 34.8s remaining: 0.7s
[Parallel(n_jobs=-1)]: Done 715 out of 715 | elapsed: 35.4s finished
Test accuracy: 0.989898989899
Best params:
{'chi2__gamma': 0.01, 'svm__C': 10.0, 'svm__kernel': 'precomputed'}
在你的情况下,只需将 chi2_kernel
替换成你用来计算核矩阵的函数即可。