获取nlme.lme()或lme4.lmer()在RPy中的简洁总结

5 投票
1 回答
1744 浏览
提问于 2025-04-18 09:45

我正在通过RPy与nlme和lme4这两个R函数进行交互,我想在我的Python控制台中获取一个输出摘要。

我运行了以下代码:

test1=nlme.lme(r.formula('Pupil~CoI*Time'), random=r.formula('~1|ID'),data=dfr)
test2=nlme.lme(r.formula('Pupil~CoI*measurement'),random=r.formula('~1|ID'),data=dfr)
test1_sum= r.summary(test1)
test2_sum= r.summary(test2)
print test1_sum
print test2_sum

这是针对nlme的代码,针对lme4的代码是:

test1=lme4.lmer(r.formula('Pupil~CoI*Time+(1|ID)'),data=dfr)
test2=lme4.lmer(r.formula('Pupil~CoI*measurement+(1|ID)'),data=dfr)
test1_sum= r.summary(test1)
test2_sum= r.summary(test2)
print test1_sum
print test2_sum

如果你想要一个包含数据和明确导入的代码片段,请参考这个IPython笔记本

在所有情况下,我得到的输出信息非常多,其中有一段特别长的内容,看起来像是:

Data: structure(list(CoI = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,  1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,  1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,  1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,  1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,  1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L ......

我希望能得到一个更简洁的摘要,类似于:

Random effects:
 Formula: ~1 | ID
        (Intercept)  Residual
StdDev:   0.2201214 0.1199874

Fixed effects: Pupil ~ CoI * measurement 
                         Value  Std.Error   DF   t-value p-value
(Intercept)          1.2068660 0.06369911 5769 18.946357       0
CoIhard             -0.0394413 0.00629117 5769 -6.269306       0
measurement         -0.0002743 0.00003207 5769 -8.554287       0
CoIhard:measurement  0.0005227 0.00004536 5769 11.524511       0
 Correlation: 
                    (Intr) CoIhrd msrmnt
CoIhard             -0.049              
measurement         -0.060  0.612       
CoIhard:measurement  0.043 -0.865 -0.707

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-9.86773055 -0.37638950  0.02085029  0.43203795  4.97364143 

Number of Observations: 5784
Number of Groups: 12 

(这个摘要包含在我得到的输出中,但在上面的内容之后有成千上万条记录才出现)我该如何实现这个呢?

1 个回答

2

正确的方法是使用 .rx2() 这个方法,有很多种不同的用法:

In [43]:

print test2_sum.names
Unable to unlink tempfile c:\docume~1\x60t\locals~1\temp\tmpnhw4n4
 [1] "methTitle"    "objClass"     "devcomp"      "isLmer"       "useScale"    

 [6] "logLik"       "family"       "link"         "ngrps"        "coefficients"

[11] "sigma"        "vcov"         "varcor"       "AICtab"       "call"        

[16] "residuals"   

In [44]:

print test2_sum.rx2('vcov') # to access R type print out
Unable to unlink tempfile c:\docume~1\x60t\locals~1\temp\tmpebn3f1
4 x 4 Matrix of class "dpoMatrix"

                      (Intercept)     CoIhard  measurement CoIhard:measurement

(Intercept)         93253.4275120 -80.6588422 -0.503069702         0.503069702

CoIhard               -80.6588422 161.3176844  0.503069702        -1.006139404

measurement            -0.5030697   0.5030697  0.004192248        -0.004192248

CoIhard:measurement     0.5030697  -1.0061394 -0.004192248         0.008384495

In [45]:

print test2_sum.rx2('varcor') # to access R type print out
Unable to unlink tempfile c:\docume~1\x60t\locals~1\temp\tmpcad6ld
 Groups   Name        Std.Dev.

 ID       (Intercept) 1057.39 

 Residual              242.24 

In [46]:

list(test2_sum.rx2('varcor')) # to get the values
Out[46]:
[<Matrix - Python:0x0782CEB8 / R:0x0E97FB28>
[1118073.223847]]
In [47]:

list(test2_sum.rx2('varcor')[0]) # to get the values
Out[47]:
[1118073.2238471208]

通过跳过 callsresiduals,你可以去掉大部分内容,试试这个:

for i, v in enumerate(list(test2_sum.names)):
    if v not in ['call', 'residuals']:
        print '%s========================================================='%i, v
        print test2_sum.rx2(v)

补充说明:

我认为访问 lme4 结果中的 tTable(使用 rpy2)的最佳方法是将其转换为 pandasDataFrame

In [73]:

print com.convert_robj(test2_sum.rx2('tTable'))
                           Value   Std.Error    DF    t-value       p-value
(Intercept)          2480.515542  305.374210  5769   8.122872  5.521357e-16
CoIhard               -90.840336   12.701090  5769  -7.152169  9.602962e-13
measurement            -0.288709    0.064748  5769  -4.458998  8.390496e-06
CoIhard:measurement     1.049136    0.091567  5769  11.457595  4.546122e-30

[4 rows x 5 columns]

虽然 print 输出和 R 的打印结果不完全一样,但其实很容易就能做到:

In [87]:

print test2_sum.rx2('tTable').__str__().replace('\r\n\r\n', '\n')

                           Value    Std.Error   DF   t-value      p-value
(Intercept)         2480.5155423 305.37420990 5769  8.122872 5.521357e-16
CoIhard              -90.8403359  12.70108989 5769 -7.152169 9.602962e-13
measurement           -0.2887093   0.06474757 5769 -4.458998 8.390496e-06
CoIhard:measurement    1.0491363   0.09156689 5769 11.457595 4.546122e-30

撰写回答