编写速度更快的Python物理simu

2024-05-16 11:19:45 发布

您现在位置:Python中文网/ 问答频道 /正文

我一直在用Python编写自己的物理引擎,作为物理和编程方面的练习。我从学习教程located here开始。这很顺利,但后来我发现了托马斯·雅各布森的《高级角色物理学》一文,这篇文章介绍了使用Verlet集成进行模拟,我发现这篇文章很吸引人。

我一直在尝试使用verlet集成编写自己的基本物理模拟器,但结果比我最初预期的要稍微困难一些。我在外面浏览示例程序进行阅读,无意中发现了this one written in Pythonthis tutorial使用处理。

处理版本给我留下深刻印象的是它的运行速度。光是布料就有2400个不同的模拟点,这还不包括尸体。

python示例只对布料使用256个粒子,并且它以大约每秒30帧的速度运行。我试着将粒子数增加到2401(程序必须是正方形才能工作),它的运行速度大约是每秒3帧。


这两种方法的工作原理都是将粒子对象的实例存储在列表中,然后遍历列表,调用每个粒子的“更新位置”方法。例如,这是处理草图中计算每个粒子的新位置的代码部分:

for (int i = 0; i < pointmasses.size(); i++) {
    PointMass pointmass = (PointMass) pointmasses.get(i);
    pointmass.updateInteractions();
    pointmass.updatePhysics(fixedDeltaTimeSeconds);
}

编辑:下面是我之前链接的python版本的代码:

"""
verletCloth01.py
Eric Pavey - 2010-07-03 - www.akeric.com

Riding on the shoulders of giants.
I wanted to learn now to do 'verlet cloth' in Python\Pygame.  I first ran across
this post \ source:
http://forums.overclockers.com.au/showthread.php?t=870396
http://dl.dropbox.com/u/3240460/cloth5.py

Which pointed to some good reference, that was a dead link.  After some searching,
I found it here:
http://www.gpgstudy.com/gpgiki/GDC%202001%3A%20Advanced%20Character%20Physics
Which is a 2001 SIGGRAPH paper by Thomas Jakobsen called:
"GDC 2001: Advanced Characer Physics".

This code is a Python\Pygame interpretation of that 2001 Siggraph paper.  I did
borrow some code from 'domlebo's source code, it was a great starting point.  But
I'd like to think I put my own flavor on it.
"""

#--------------
# Imports & Initis
import sys
from math import sqrt

# Vec2D comes from here: http://pygame.org/wiki/2DVectorClass
from vec2d import Vec2d
import pygame
from pygame.locals import *
pygame.init()

#--------------
# Constants
TITLE = "verletCloth01"
WIDTH = 600
HEIGHT = 600
FRAMERATE = 60
# How many iterations to run on our constraints per frame?
# This will 'tighten' the cloth, but slow the sim.
ITERATE = 2
GRAVITY = Vec2d(0.0,0.05)
TSTEP = 2.8

# How many pixels to position between each particle?
PSTEP = int(WIDTH*.03)
# Offset in pixels from the top left of screen to position grid:
OFFSET = int(.25*WIDTH)

#-------------
# Define helper functions, classes

class Particle(object):
    """
    Stores position, previous position, and where it is in the grid.
    """
    def __init__(self, screen, currentPos, gridIndex):
        # Current Position : m_x
        self.currentPos = Vec2d(currentPos)
        # Index [x][y] of Where it lives in the grid
        self.gridIndex = gridIndex
        # Previous Position : m_oldx
        self.oldPos = Vec2d(currentPos)
        # Force accumulators : m_a
        self.forces = GRAVITY
        # Should the particle be locked at its current position?
        self.locked = False
        self.followMouse = False

        self.colorUnlocked = Color('white')
        self.colorLocked = Color('green')
        self.screen = screen

    def __str__(self):
        return "Particle <%s, %s>"%(self.gridIndex[0], self.gridIndex[1])

    def draw(self):
        # Draw a circle at the given Particle.
        screenPos = (self.currentPos[0], self.currentPos[1])
        if self.locked:
            pygame.draw.circle(self.screen, self.colorLocked, (int(screenPos[0]),
                                                         int(screenPos[1])), 4, 0)
        else:
            pygame.draw.circle(self.screen, self.colorUnlocked, (int(screenPos[0]),
                                                         int(screenPos[1])), 1, 0)

class Constraint(object):
    """
    Stores 'constraint' data between two Particle objects.  Stores this data
    before the sim runs, to speed sim and draw operations.
    """
    def __init__(self, screen, particles):
        self.particles = sorted(particles)
        # Calculate restlength as the initial distance between the two particles:
        self.restLength = sqrt(abs(pow(self.particles[1].currentPos.x -
                                       self.particles[0].currentPos.x, 2) +
                                   pow(self.particles[1].currentPos.y -
                                       self.particles[0].currentPos.y, 2)))
        self.screen = screen
        self.color = Color('red')

    def __str__(self):
        return "Constraint <%s, %s>"%(self.particles[0], self.particles[1])

    def draw(self):
        # Draw line between the two particles.
        p1 = self.particles[0]
        p2 = self.particles[1]
        p1pos = (p1.currentPos[0],
                 p1.currentPos[1])
        p2pos = (p2.currentPos[0],
                 p2.currentPos[1])
        pygame.draw.aaline(self.screen, self.color,
                           (p1pos[0], p1pos[1]), (p2pos[0], p2pos[1]), 1)

class Grid(object):
    """
    Stores a grid of Particle objects.  Emulates a 2d container object.  Particle
    objects can be indexed by position:
        grid = Grid()
        particle = g[2][4]
    """
    def __init__(self, screen, rows, columns, step, offset):

        self.screen = screen
        self.rows = rows
        self.columns = columns
        self.step = step
        self.offset = offset

        # Make our internal grid:
        # _grid is a list of sublists.
        #    Each sublist is a 'column'.
        #        Each column holds a particle object per row:
        # _grid =
        # [[p00, [p10, [etc,
        #   p01,  p11,
        #   etc], etc],     ]]
        self._grid = []
        for x in range(columns):
            self._grid.append([])
            for y in range(rows):
                currentPos = (x*self.step+self.offset, y*self.step+self.offset)
                self._grid[x].append(Particle(self.screen, currentPos, (x,y)))

    def getNeighbors(self, gridIndex):
        """
        return a list of all neighbor particles to the particle at the given gridIndex:

        gridIndex = [x,x] : The particle index we're polling
        """
        possNeighbors = []
        possNeighbors.append([gridIndex[0]-1, gridIndex[1]])
        possNeighbors.append([gridIndex[0], gridIndex[1]-1])
        possNeighbors.append([gridIndex[0]+1, gridIndex[1]])
        possNeighbors.append([gridIndex[0], gridIndex[1]+1])

        neigh = []
        for coord in possNeighbors:
            if (coord[0] < 0) | (coord[0] > self.rows-1):
                pass
            elif (coord[1] < 0) | (coord[1] > self.columns-1):
                pass
            else:
                neigh.append(coord)

        finalNeighbors = []
        for point in neigh:
            finalNeighbors.append((point[0], point[1]))

        return finalNeighbors

    #--------------------------
    # Implement Container Type:

    def __len__(self):
        return len(self.rows * self.columns)

    def __getitem__(self, key):
        return self._grid[key]

    def __setitem__(self, key, value):
        self._grid[key] = value

    #def __delitem__(self, key):
        #del(self._grid[key])

    def __iter__(self):
        for x in self._grid:
            for y in x:
                yield y

    def __contains__(self, item):
        for x in self._grid:
            for y in x:
                if y is item:
                    return True
        return False


class ParticleSystem(Grid):
    """
    Implements the verlet particles physics on the encapsulated Grid object.
    """

    def __init__(self, screen, rows=49, columns=49, step=PSTEP, offset=OFFSET):
        super(ParticleSystem, self).__init__(screen, rows, columns, step, offset)

        # Generate our list of Constraint objects.  One is generated between
        # every particle connection.
        self.constraints = []
        for p in self:
            neighborIndices = self.getNeighbors(p.gridIndex)
            for ni in neighborIndices:
                # Get the neighbor Particle from the index:
                n = self[ni[0]][ni[1]]
                # Let's not add duplicate Constraints, which would be easy to do!
                new = True
                for con in self.constraints:
                    if n in con.particles and p in con.particles:
                        new = False
                if new:
                    self.constraints.append( Constraint(self.screen, (p,n)) )

        # Lock our top left and right particles by default:
        self[0][0].locked = True
        self[1][0].locked = True
        self[-2][0].locked = True
        self[-1][0].locked = True

    def verlet(self):
        # Verlet integration step:
        for p in self:
            if not p.locked:
                # make a copy of our current position
                temp = Vec2d(p.currentPos)
                p.currentPos += p.currentPos - p.oldPos + p.forces * TSTEP**2
                p.oldPos = temp
            elif p.followMouse:
                temp = Vec2d(p.currentPos)
                p.currentPos = Vec2d(pygame.mouse.get_pos())
                p.oldPos = temp

    def satisfyConstraints(self):
        # Keep particles together:
        for c in self.constraints:
            delta =  c.particles[0].currentPos - c.particles[1].currentPos
            deltaLength = sqrt(delta.dot(delta))
            try:
                # You can get a ZeroDivisionError here once, so let's catch it.
                # I think it's when particles sit on top of one another due to
                # being locked.
                diff = (deltaLength-c.restLength)/deltaLength
                if not c.particles[0].locked:
                    c.particles[0].currentPos -= delta*0.5*diff
                if not c.particles[1].locked:
                    c.particles[1].currentPos += delta*0.5*diff
            except ZeroDivisionError:
                pass

    def accumulateForces(self):
        # This doesn't do much right now, other than constantly reset the
        # particles 'forces' to be 'gravity'.  But this is where you'd implement
        # other things, like drag, wind, etc.
        for p in self:
            p.forces = GRAVITY

    def timeStep(self):
        # This executes the whole shebang:
        self.accumulateForces()
        self.verlet()
        for i in range(ITERATE):
            self.satisfyConstraints()

    def draw(self):
        """
        Draw constraint connections, and particle positions:
        """
        for c in self.constraints:
            c.draw()
        #for p in self:
        #    p.draw()

    def lockParticle(self):
        """
        If the mouse LMB is pressed for the first time on a particle, the particle
        will assume the mouse motion.  When it is pressed again, it will lock
        the particle in space.
        """
        mousePos = Vec2d(pygame.mouse.get_pos())
        for p in self:
            dist2mouse = sqrt(abs(pow(p.currentPos.x -
                                      mousePos.x, 2) +
                                  pow(p.currentPos.y -
                                      mousePos.y, 2)))
            if dist2mouse < 10:
                if not p.followMouse:
                    p.locked = True
                    p.followMouse = True
                    p.oldPos = Vec2d(p.currentPos)
                else:
                    p.followMouse = False

    def unlockParticle(self):
        """
        If the RMB is pressed on a particle, if the particle is currently
        locked or being moved by the mouse, it will be 'unlocked'/stop following
        the mouse.
        """
        mousePos = Vec2d(pygame.mouse.get_pos())
        for p in self:
            dist2mouse = sqrt(abs(pow(p.currentPos.x -
                                      mousePos.x, 2) +
                                  pow(p.currentPos.y -
                                      mousePos.y, 2)))
            if dist2mouse < 5:
                p.locked = False

#------------
# Main Program
def main():
    # Screen Setup
    screen = pygame.display.set_mode((WIDTH, HEIGHT))
    clock = pygame.time.Clock()

    # Create our grid of particles:
    particleSystem = ParticleSystem(screen)
    backgroundCol = Color('black')

    # main loop
    looping = True
    while looping:
        clock.tick(FRAMERATE)
        pygame.display.set_caption("%s -- www.AKEric.com -- LMB: move\lock - RMB: unlock - fps: %.2f"%(TITLE, clock.get_fps()) )
        screen.fill(backgroundCol)

        # Detect for events
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                looping = False
            elif event.type == MOUSEBUTTONDOWN:
                if event.button == 1:
                    # See if we can make a particle follow the mouse and lock
                    # its position when done.
                    particleSystem.lockParticle()
                if event.button == 3:
                    # Try to unlock the current particles position:
                    particleSystem.unlockParticle()

        # Do stuff!
        particleSystem.timeStep()
        particleSystem.draw()

        # update our display:
        pygame.display.update()

#------------
# Execution from shell\icon:
if __name__ == "__main__":
    print "Running Python version:", sys.version
    print "Running PyGame version:", pygame.ver
    print "Running %s.py"%TITLE
    sys.exit(main())

因为这两个程序的工作方式大致相同,但Python版本要慢得多,这让我想:

  • 这种性能差异是Python本质的一部分吗?
  • 如果我想从我自己的Python程序中获得更好的性能,我应该做什么与上面不同的事情?E、 g将所有粒子的属性存储在一个数组中,而不是使用单个对象等

编辑:已回答!!

@E先生在评论中的链接PyCon谈话,以及@A.Rosa对链接资源的回答,都极大地帮助我们更好地理解如何编写好的、快速的python代码。我现在将此页作为书签,以备将来参考:D


Tags: thetoinselfforifdefscreen
3条回答

我也建议你读一下其他的物理引擎。有一些开源引擎使用各种方法来计算“物理”。

  • 牛顿博弈动力学
  • 花栗鼠
  • 子弹
  • 框2d
  • ODE(开放式动力发动机)

大多数发动机也有端口:

  • 侏儒
  • 弹头
  • PyBox2D型

如果你仔细阅读这些引擎的文档,你会经常发现一些语句,说它们是为速度(30fps-60fps)而优化的。但如果你认为他们能在计算“真实”物理的时候做到这一点,那你就错了。大多数引擎计算物理量到了正常用户无法光学区分“真实”物理行为和“模拟”物理行为的程度。但是,如果您调查错误,它是可以忽略的,如果您想写游戏。但如果你想学物理,所有这些引擎对你都没有用。 这就是为什么我要说,如果你做一个真正的物理模拟,你比那些引擎慢的设计,你永远不会超过另一个物理引擎。

如果像编写Java那样编写Python,当然会慢一些,惯用Java不能很好地转换成惯用Python。

Is this performance difference part of the nature of Python? What should I do differently from the above if I want to get better performance from my own Python programs? E.g store the properties of all particles inside an array instead of using individual objects, etc.

很难说没有看到你的代码。

以下是python和java之间有时可能影响性能的不完整差异列表:

  1. 处理使用立即模式画布,如果您希望在Python中获得类似的性能,还需要使用立即模式画布。大多数GUI框架(包括Tkinter canvas)中的画布都是保留模式,这种模式更易于使用,但本质上比立即模式慢。您需要使用即时模式画布,如pygame、SDL或Pyglet提供的画布。

  2. Python是动态语言,这意味着在运行时解析实例成员访问、模块成员访问和全局变量访问。python中的实例成员访问、模块成员访问和全局变量访问实际上是字典访问。在java中,它们在编译时被解析,而且从本质上讲,解析速度要快得多。将频繁访问的全局变量、模块变量和属性缓存到本地变量。

  3. 在python 2.x中,range()生成一个具体的列表,在python中,使用迭代器完成的迭代for item in list通常比使用迭代变量for n in range(len(list))完成的迭代要快。几乎总是应该使用迭代器直接迭代,而不是使用range(len(…))迭代。

  4. Python的数字是不可变的,这意味着任何算术计算都会分配一个新对象。这就是为什么普通python不太适合于低级计算的一个原因;大多数希望能够编写低级计算而不必使用C扩展的人通常使用cython、psyco或numpy。不过,只有当你有数百万的计算时,这通常才成为一个问题。

这只是部分的,非常不完整的列表,还有很多其他原因可以解释为什么将java转换为python会产生次优代码。如果看不到你的代码,就不可能知道你需要做些什么。优化的python代码通常看起来与优化的java代码非常不同。

Python Wiki的Performance Tips部分链接了一个Guido van Rossum's article。在结论中,您可以阅读以下句子:

If you feel the need for speed, go for built-in functions - you can't beat a loop written in C.

本文接着列出了循环优化的指导原则。我推荐这两个资源,因为它们给出了优化Python代码的具体和实用的建议。

benchmarksgame.alioth.debian.org中还有一组众所周知的基准测试,您可以在不同的机器中找到不同程序和语言之间的比较。正如可以看到的,有很多变量在起作用,使得不可能状态变得更广泛,比如Java比Python快。这通常可以用一句话来概括:语言没有速度;实现有速度。

在您的代码中,可以使用内置函数应用更多的pythonic和更快的替代方案。例如,有几个嵌套循环(其中一些不需要处理整个列表),可以使用^{}list comprehensions重写。PyPy也是提高性能的另一个有趣的选项。我不是Python优化方面的专家,但是有很多非常有用的技巧(注意don't write Java in Python就是其中之一!)。

关于SO的资源和其他相关问题:

相关问题 更多 >