Python非线性回归- 有没有一种简单的方法可以更好地拟合这些数据?

2024-04-25 18:03:09 发布

您现在位置:Python中文网/ 问答频道 /正文

我有一些数据,我想拟合,所以我可以作出一些估计的价值,一个物理参数给定一定的温度。

我用numpy.polyfit作为二次模型,但拟合效果并不如我所希望的那么好,我也没有太多回归经验。

我包括了numpy提供的散点图和模型: S vs Temperature; blue dots are experimental data, black line is the model

x轴是温度(以C为单位),y轴是参数,我们称之为S。这是实验数据,但理论上S应该随着温度的升高趋向于0,随着温度的降低趋向于1。

我的问题是:如何才能更好地拟合这些数据?我应该使用什么库,什么样的函数比多项式更接近这些数据,等等?

如果有用的话,我可以提供代码、多项式系数等。

Here is a Dropbox link to my data.(为了避免混淆,有点重要,虽然它不会改变实际的回归,但是这个数据集中的温度列是Tc-t,其中Tc是转变温度(40C)。我用pandas把这个转换成T,计算40-x)。


Tags: 数据模型numpydata参数is物理经验
3条回答

对于非线性回归问题,可以从sklearn中尝试SVR()、KNeighborsRegressor()或DecisionTreeRegression(),并比较测试集上的模型性能。

尝试使用多项式核的support vector machine

使用scikit learn,安装模型可以简单到:

from sklearn.svm import SVC
#... load the data into X,y
model = SVC(kernel='poly')
model.fit(X,y)
#plot the model...

此示例代码使用具有两个形状参数(a和b)和偏移项(不影响曲率)的表达式。方程为“y=1.0/(1.0+exp(-a(x-b)))+Offset”,参数值a=2.1540318329369712E-01,b=-6.6744890642157646E+00,Offset=-3.524129985969645e-01,R平方为0.988,RMSE为0.0085。

该示例包含您用Python代码发布的数据,用于拟合和绘制,并使用scipy.optimize.differential_evolution遗传算法自动估计初始参数。差分进化的scipy实现使用拉丁超立方体算法来确保对参数空间的彻底搜索,这需要搜索的范围-在本示例代码中,这些范围基于最大和最小数据值。

sigmoidal

import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings

xData = numpy.array([19.1647, 18.0189, 16.9550, 15.7683, 14.7044, 13.6269, 12.6040, 11.4309, 10.2987, 9.23465, 8.18440, 7.89789, 7.62498, 7.36571, 7.01106, 6.71094, 6.46548, 6.27436, 6.16543, 6.05569, 5.91904, 5.78247, 5.53661, 4.85425, 4.29468, 3.74888, 3.16206, 2.58882, 1.93371, 1.52426, 1.14211, 0.719035, 0.377708, 0.0226971, -0.223181, -0.537231, -0.878491, -1.27484, -1.45266, -1.57583, -1.61717])
yData = numpy.array([0.644557, 0.641059, 0.637555, 0.634059, 0.634135, 0.631825, 0.631899, 0.627209, 0.622516, 0.617818, 0.616103, 0.613736, 0.610175, 0.606613, 0.605445, 0.603676, 0.604887, 0.600127, 0.604909, 0.588207, 0.581056, 0.576292, 0.566761, 0.555472, 0.545367, 0.538842, 0.529336, 0.518635, 0.506747, 0.499018, 0.491885, 0.484754, 0.475230, 0.464514, 0.454387, 0.444861, 0.437128, 0.415076, 0.401363, 0.390034, 0.378698])


def func(x, a, b, Offset): # Sigmoid A With Offset from zunzun.com
    return  1.0 / (1.0 + numpy.exp(-a * (x-b))) + Offset


# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
    warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
    val = func(xData, *parameterTuple)
    return numpy.sum((yData - val) ** 2.0)


def generate_Initial_Parameters():
    # min and max used for bounds
    maxX = max(xData)
    minX = min(xData)
    maxY = max(yData)
    minY = min(yData)

    parameterBounds = []
    parameterBounds.append([minX, maxX]) # seach bounds for a
    parameterBounds.append([minX, maxX]) # seach bounds for b
    parameterBounds.append([0.0, maxY]) # seach bounds for Offset

    # "seed" the numpy random number generator for repeatable results
    result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
    return result.x

# generate initial parameter values
geneticParameters = generate_Initial_Parameters()

# curve fit the test data
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)

print('Parameters', fittedParameters)

modelPredictions = func(xData, *fittedParameters) 

absError = modelPredictions - yData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

print()


##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plot
    xModel = numpy.linspace(min(xData), max(xData))
    yModel = func(xModel, *fittedParameters)

    # now the model as a line plot
    axes.plot(xModel, yModel)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)

相关问题 更多 >