scipy.optimize公司约束最小化SLSQP不能100%匹配目标

2024-06-16 10:28:14 发布

您现在位置:Python中文网/ 问答频道 /正文

我试着得到最小的重量,更接近平均体重的总和。我目前的问题是使用SLSQP解算器,我无法找到符合目标100%的正确权重。有没有其他的解决方法可以用来解决我的问题?或者任何数学建议。请帮忙。在

我现在的数学是

           **min⁡(∑|x-mean(x)|)**

           **s.t.** Aw-b=0, w>=0


           **bound** 0.2'<'x<0.5

数据

^{pr2}$

问题:找到最接近平均值的最小重量


Python代码:

A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
        3505.000000, 3442.000000, 3381.000000, 3392.000000],
       [233445193.000000, 217344811.000000, 237746918.000000,
        219204892.000000, 225272825.000000, 242819442.000000,
        215258725.000000, 227681178.000000, 215189377.000000],
       [559090945.000000, 496500751.000000, 493639029.000000,
        461547877.000000, 501057960.000000, 505073223.000000,
        490458632.000000, 503102998.000000, 487026744.000000]])

b = np.array([8531, 1079115532, 429386951]) 

n=9
def fsolveMin(A,b,n):

    # The constraints: Ax = b

    def cons(x):
        return A.dot(x)-b

    cons = ({'type':'eq','fun':cons},

            {'type':'ineq','fun':lambda x:x[0]})

    # The minimizing constraints: the total absolute difference between the coefficients

    def fn(x):
        return np.sum(np.abs(x-np.mean(x)))       

    # Initialize the coefficients randomly
    z0 = abs(np.random.randn(len(A[1,:])))

    # Set up bound
   # bnds = [(0, None)]*n

    # Solve the problem

    sol = minimize(fn, x0 = z0, constraints = cons, method = 'SLSQP', options={'disp': True})



    #expected 35%
    print(sol.x)
    print(A.dot(sol.x))

    #print(fn(sol.x))

print(str(fsolveMin(A,b,n))+"\n\n")

Tags: thedefnp数学meanarrayfnprint
2条回答

为了让您了解如何使用诸如scipy的linprog这样的低级工具来实现这一点,我们必须模仿它们的标准形式

其基本思想是:

  • 对于一个辅助变量,建议的平均值
  • 添加n个辅助变量来处理绝对值like documented in lpsolve's docs
  • (我使用n个额外的aux-vars作为x-mean的临时变量)

现在这个例子起作用了。在

对于你的数据,你必须小心界限。确保这个问题是可行的。这个问题本身是非常不稳定的,因为硬约束用于Ax=b;通常您会最小化一些范数/最小二乘法(不再是LP;QP/SOCP),并将此错误添加到目标中)!在

可能需要在某个时刻将解算器从method='simplex'切换到{}(仅在scipy1.0之后可用)。在

备选方案:

使用cvxpy,公式化要容易得多(两个变体都提到过),而且您可以免费获得一个相当好的解算器(ECOS)。在

代码:

import numpy as np
import scipy.optimize as spo
np.set_printoptions(linewidth=120)
np.random.seed(1)

""" Create random data """
M, N = 2, 3
A = np.random.random(size=(M,N))
x_hidden = np.random.random(size=N)
b = A.dot(x_hidden)  # target
n = N

print('Original A')
print(A)
print('hidden x: ', x_hidden)
print('target: ', b)

""" Optimize as LP """
def solve(A, b, n):
    print('Reformulation')
    am, an = A.shape

    # Introduce aux-vars
    # 1: y = mean
    # n: z = x - mean
    # n: abs(z)
    n_plus_aux_vars = 3*n + 1

    # Equality constraint: y = mean
    eq_mean_A = np.zeros(n_plus_aux_vars)
    eq_mean_A[:n] = 1. / n
    eq_mean_A[n] = -1.
    eq_mean_b = np.array([0])

    print('y = mean A:')
    print(eq_mean_A)
    print('y = mean b:')
    print(eq_mean_b)

    # Equality constraints: Ax = b
    eq_A = np.zeros((am, n_plus_aux_vars))
    eq_A[:, :n] = A[:, :n]
    eq_b = np.copy(b)

    print('Ax=b A:')
    print(eq_A)
    print('Ax=b b:')
    print(eq_b)

    # Equality constraints: z = x - mean
    eq_mean_A_z = np.hstack([-np.eye(n), np.ones((n, 1)), + np.eye(n), np.zeros((n, n))])
    eq_mean_b_z = np.zeros(n)

    print('z = x - mean A:')
    print(eq_mean_A_z)
    print('z = x - mean b:')
    print(eq_mean_b_z)

    # Inequality constraints: absolute values -> x <= x' ; -x <= x'

    ineq_abs_0_A = np.hstack([np.zeros((n, n)), np.zeros((n, 1)), np.eye(n), -np.eye(n)])
    ineq_abs_0_b = np.zeros(n)

    ineq_abs_1_A = np.hstack([np.zeros((n, n)), np.zeros((n, 1)), -np.eye(n), -np.eye(n)])
    ineq_abs_1_b = np.zeros(n)

    # Bounds
    # REMARK: Do not touch anything besides the first bounds-row!
    bounds = [(0., 1.) for i in range(n)] +     \
             [(None, None)] +                   \
             [(None, None) for i in range(n)] + \
             [(0, None) for i in range(n)]

    # Objective
    c = np.zeros(n_plus_aux_vars)
    c[-n:] = 1

    A_eq = np.vstack((eq_mean_A, eq_A, eq_mean_A_z))
    b_eq = np.hstack([eq_mean_b, eq_b, eq_mean_b_z])

    A_ineq = np.vstack((ineq_abs_0_A, ineq_abs_1_A))
    b_ineq = np.hstack([ineq_abs_0_b, ineq_abs_1_b])

    print('solve...')
    result = spo.linprog(c, A_ineq, b_ineq, A_eq, b_eq, bounds=bounds, method='simplex')
    print(result)
    x = result.x[:n]
    print('x: ', x)
    print('residual Ax-b: ', A.dot(x) - b)
    print('mean: ', result.x[n])
    print('x - mean: ', x - result.x[n])
    print('l1-norm(x - mean) / objective: ', np.linalg.norm(x - result.x[n], 1))

solve(A, b, n)

输出:

^{pr2}$

现在对于您的原始数据,,事情变得很棘手!在

您需要:

  • 缩放数据,因为变量的大小会损害解算器
    • 根据您的任务,您可能需要分析缩放/反转的效果
  • 使用内部点解算器
  • 小心界限

示例:

A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
        3505.000000, 3442.000000, 3381.000000, 3392.000000],
       [233445193.000000, 217344811.000000, 237746918.000000,
        219204892.000000, 225272825.000000, 242819442.000000,
        215258725.000000, 227681178.000000, 215189377.000000],
       [559090945.000000, 496500751.000000, 493639029.000000,
        461547877.000000, 501057960.000000, 505073223.000000,
        490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531., 1079115532., 429386951.])

A /= 10000.  # scaling
b /= 10000.  # scaling

bounds = [(-50., 50.) for i in range(n)] +     \
...

result = spo.linprog(c, A_ineq, b_ineq, A_eq, b_eq, bounds=bounds, method='interior-point')

输出:

solve...
     con: array([  3.98410760e-09,   1.18067724e-08,   8.12879938e-04,   1.75969041e-03,  -3.93853838e-09,  -3.96305566e-09,
        -4.10043555e-09,  -3.94957667e-09,  -3.88362764e-09,  -3.89452381e-09,  -3.95134592e-09,  -3.92182287e-09,
        -3.85762178e-09])
     fun: 52.742900697626389
 message: 'Optimization terminated successfully.'
     nit: 8
   slack: array([  5.13245265e+01,   1.89309145e-08,   1.83429094e-09,   4.28687782e-09,   1.03726911e-08,   2.77000474e-09,
         1.41837413e+00,   6.75769654e-09,   8.65285462e-10,   2.78501844e-09,   3.09591539e-09,   5.27429006e+01,
         1.30944103e-08,   5.32994799e-09,   3.15369669e-08,   2.51943821e-09,   7.54848797e-09,   3.22510447e-09])
  status: 0
 success: True
       x: array([ -2.51938304e+01,   4.68432810e-01,   2.68398831e+01,   4.68432822e-01,   4.68432815e-01,   4.68432832e-01,
        -2.40754247e-01,   4.68432818e-01,   4.68432819e-01,   4.68432822e-01,  -2.56622633e+01,  -7.91749954e-09,
         2.63714503e+01,   4.40376624e-09,  -2.52137156e-09,   1.43834811e-08,  -7.09187065e-01,   3.95395716e-10,
         1.17990950e-09,   2.56622633e+01,   1.10134149e-08,   2.63714503e+01,   8.69064406e-09,   7.85131955e-09,
         1.71534858e-08,   7.09187068e-01,   7.15309226e-09,   2.04519496e-09])
x:  [-25.19383044   0.46843281  26.83988313   0.46843282   0.46843282   0.46843283  -0.24075425   0.46843282   0.46843282]
residual Ax-b:  [ -1.18067724e-08  -8.12879938e-04  -1.75969041e-03]
mean:  0.468432821891
x - mean:  [ -2.56622633e+01  -1.18805552e-08   2.63714503e+01   4.54189575e-10  -6.40499920e-09   1.04889573e-08  -7.09187069e-01
  -3.52642715e-09  -2.67771227e-09]
l1-norm(x - mean) / objective:  52.7429006758

编辑

这里有一个基于SOCP的最小二乘(软约束)方法,我建议在数值稳定性方面!这种方法可以而且应该根据您的需要进行调整。它是使用前面提到的使用ECOS solver的cvxpy建模工具实现的。在

基本思路:

  • 而不是min(l1-norm(x - mean(x)) st. Ax=b
  • 求解min(l2-norm(Ax-b) + c * l1-norm(x - mean(x)))
    • 其中c是非负权衡参数
    • cAx=b更重要
    • cx - mean(x)更重要

数据和-50, 50c=1e-3边界的示例代码和输出:

import numpy as np
import cvxpy as cvx

""" DATA """
A = np.array([[3582.000000, 3394.000000, 3356.000000, 3256.000000, 3415.000000,
        3505.000000, 3442.000000, 3381.000000, 3392.000000],
       [233445193.000000, 217344811.000000, 237746918.000000,
        219204892.000000, 225272825.000000, 242819442.000000,
        215258725.000000, 227681178.000000, 215189377.000000],
       [559090945.000000, 496500751.000000, 493639029.000000,
        461547877.000000, 501057960.000000, 505073223.000000,
        490458632.000000, 503102998.000000, 487026744.000000]])
b = np.array([8531., 1079115532., 429386951.])
n = 9

# A /= 10000.  scaling would be a good idea
# b /= 10000.  """

""" SOCP-based least-squares approach """
def solve(A, b, n, c=1e-1):
    x = cvx.Variable(n)
    y = cvx.Variable(1)             # mean

    lower_bounds = np.zeros(n) - 50  # -50
    upper_bounds = np.zeros(n) + 50  #  50

    constraints = []
    constraints.append(x >= lower_bounds)
    constraints.append(x <= upper_bounds)
    constraints.append(y == cvx.sum_entries(x) / n)

    objective = cvx.Minimize(cvx.norm(A*x-b, 2) + c * cvx.norm(x - y, 1))
    problem = cvx.Problem(objective, constraints)

    problem.solve(solver=cvx.ECOS, verbose=True)

    print('Objective: ', problem.value)
    print('x: ', x.T.value)
    print('mean: ', y.value)
    print('Ax-b: ')
    print((A*x - b).value)
    print('x - mean: ', (x - y).T.value)

solve(A, b, n)

输出:

 ECOS 2.0.4 - (C) embotech GmbH, Zurich Switzerland, 2012-15. Web: www.embotech.com/ECOS

It     pcost       dcost      gap   pres   dres    k/t    mu     step   sigma     IR    |   BT
 0  +2.637e-17  -1.550e+06  +7e+08  1e-01  2e-04  1e+00  2e+07     -     -    1  1  - |  -  -
 1  -8.613e+04  -1.014e+05  +8e+06  1e-03  2e-06  2e+03  2e+05  0.9890  1e-04   2  1  1 |  0  0
 2  -1.287e+03  -1.464e+03  +1e+05  1e-05  9e-08  4e+01  3e+03  0.9872  1e-04   3  1  1 |  0  0
 3  +1.794e+02  +1.900e+02  +2e+03  2e-07  1e-07  1e+01  5e+01  0.9890  5e-03   5  3  4 |  0  0
 4  -1.388e+00  -6.826e-01  +1e+02  1e-08  7e-08  9e-01  3e+00  0.9458  4e-03   7  6  6 |  0  0
 5  +5.491e+00  +5.683e+00  +1e+01  1e-09  8e-09  2e-01  3e-01  0.9617  6e-02   1  1  1 |  0  0
 6  +6.480e+00  +6.505e+00  +1e+00  2e-10  5e-10  3e-02  4e-02  0.8928  2e-02   1  1  1 |  0  0
 7  +6.746e+00  +6.746e+00  +2e-02  3e-12  5e-10  5e-04  6e-04  0.9890  5e-03   1  0  0 |  0  0
 8  +6.759e+00  +6.759e+00  +3e-04  2e-12  2e-10  6e-06  7e-06  0.9890  1e-04   1  0  0 |  0  0
 9  +6.759e+00  +6.759e+00  +3e-06  2e-13  2e-10  6e-08  8e-08  0.9890  1e-04   2  0  0 |  0  0
10  +6.758e+00  +6.758e+00  +3e-08  5e-14  2e-10  7e-10  9e-10  0.9890  1e-04   1  0  0 |  0  0

OPTIMAL (within feastol=2.0e-10, reltol=4.7e-09, abstol=3.2e-08).
Runtime: 0.002901 seconds.

Objective:  6.757722879805085
x:  [[-18.09169736  -5.55768047  11.12130645  11.48355878  -1.13982006
   12.4290884   -3.00165819  -1.05158589  -2.4468432 ]]
mean:  0.416074272576
Ax-b:
[[  2.17051777e-03]
 [  1.90734863e-06]
 [ -5.72204590e-06]]
x - mean:  [[-18.50777164  -5.97375474  10.70523218  11.0674845   -1.55589434
   12.01301413  -3.41773246  -1.46766016  -2.86291747]]

这种方法将始终输出一个可行的解决方案(对于我们的任务),然后您可以决定观察到的残差,如果它对您有用的话。在

正如您所观察到的,在所有公式中,0的下限都是致命的(看看您的数据之间的巨大差异!)。在

在这里,下限为0将得到一个具有高残余误差的解。在

例如:

  • c=1e-7
  • 边界=0 / 15

输出:

Objective:  785913288.2410747
x:  [[ -5.57966858e-08  -4.74997454e-08   1.56066068e+00   1.68021234e-07
   -3.55602958e-08   1.75340641e-06  -4.69609562e-08  -3.10216680e-08
   -4.39482554e-08]]
mean:  0.173406926909
Ax-b:
[[ -3.29341696e+03]
 [ -7.08072860e+08]
 [  3.41016903e+08]]
x - mean:  [[-0.17340698 -0.17340697  1.38725375 -0.17340676 -0.17340696 -0.17340517
  -0.17340697 -0.17340696 -0.17340697]]

首先引入一个带约束的自由变量mu:

   mu = sum(i, x(i))/n

然后引入非负变量y(i),其中:

^{pr2}$

现在你可以最小化

   min sum(i,y(i))

现在,这是一个直接的LP(线性目标和线性约束),可以用任何LP解算器进行求解。在

相关问题 更多 >