如何实现中值堆

2024-06-07 22:33:47 发布

您现在位置:Python中文网/ 问答频道 /正文

像Max堆和Min堆一样,我希望实现一个中值堆来跟踪给定整数集的中值。API应具有以下三个功能:

insert(int)  // should take O(logN)
int median() // will be the topmost element of the heap. O(1)
int delmedian() // should take O(logN)

我想使用数组(a)实现来实现堆,其中数组索引k的子级存储在数组索引2*k和2*k+1中。为了方便起见,数组开始从索引1填充元素。 这就是我目前所拥有的: 中值堆将有两个整数来跟踪到目前为止插入的整数数量,它们是>;当前中值(gcm)和<;当前中值(lcm)。

if abs(gcm-lcm) >= 2 and gcm > lcm we need to swap a[1] with one of its children. 
The child chosen should be greater than a[1]. If both are greater, 
choose the smaller of two.

另一种情况也是如此。我想不出一个如何沉入和游动元素的算法。我认为应该考虑到这个数字与中位数的接近程度,比如:

private void swim(int k) {
    while (k > 1 && absless(k, k/2)) {   
        exch(k, k/2);
        k = k/2;
    }
}

但我不能想出完整的解决办法。


Tags: ofthe元素整数数组beminmax
3条回答

下面是一个MedianHeap的java实现,它是在上述coomomocomo的解释的帮助下开发的。

import java.util.Arrays;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.Scanner;

/**
 *
 * @author BatmanLost
 */
public class MedianHeap {

    //stores all the numbers less than the current median in a maxheap, i.e median is the maximum, at the root
    private PriorityQueue<Integer> maxheap;
    //stores all the numbers greater than the current median in a minheap, i.e median is the minimum, at the root
    private PriorityQueue<Integer> minheap;

    //comparators for PriorityQueue
    private static final maxHeapComparator myMaxHeapComparator = new maxHeapComparator();
    private static final minHeapComparator myMinHeapComparator = new minHeapComparator();

    /**
     * Comparator for the minHeap, smallest number has the highest priority, natural ordering
     */
    private static class minHeapComparator implements Comparator<Integer>{
        @Override
        public int compare(Integer i, Integer j) {
            return i>j ? 1 : i==j ? 0 : -1 ;
        }
    }

    /**
     * Comparator for the maxHeap, largest number has the highest priority
     */
    private static  class maxHeapComparator implements Comparator<Integer>{
        // opposite to minHeapComparator, invert the return values
        @Override
        public int compare(Integer i, Integer j) {
            return i>j ? -1 : i==j ? 0 : 1 ;
        }
    }

    /**
     * Constructor for a MedianHeap, to dynamically generate median.
     */
    public MedianHeap(){
        // initialize maxheap and minheap with appropriate comparators
        maxheap = new PriorityQueue<Integer>(11,myMaxHeapComparator);
        minheap = new PriorityQueue<Integer>(11,myMinHeapComparator);
    }

    /**
     * Returns empty if no median i.e, no input
     * @return
     */
    private boolean isEmpty(){
        return maxheap.size() == 0 && minheap.size() == 0 ;
    }

    /**
     * Inserts into MedianHeap to update the median accordingly
     * @param n
     */
    public void insert(int n){
        // initialize if empty
        if(isEmpty()){ minheap.add(n);}
        else{
            //add to the appropriate heap
            // if n is less than or equal to current median, add to maxheap
            if(Double.compare(n, median()) <= 0){maxheap.add(n);}
            // if n is greater than current median, add to min heap
            else{minheap.add(n);}
        }
        // fix the chaos, if any imbalance occurs in the heap sizes
        //i.e, absolute difference of sizes is greater than one.
        fixChaos();
    }

    /**
     * Re-balances the heap sizes
     */
    private void fixChaos(){
        //if sizes of heaps differ by 2, then it's a chaos, since median must be the middle element
        if( Math.abs( maxheap.size() - minheap.size()) > 1){
            //check which one is the culprit and take action by kicking out the root from culprit into victim
            if(maxheap.size() > minheap.size()){
                minheap.add(maxheap.poll());
            }
            else{ maxheap.add(minheap.poll());}
        }
    }
    /**
     * returns the median of the numbers encountered so far
     * @return
     */
    public double median(){
        //if total size(no. of elements entered) is even, then median iss the average of the 2 middle elements
        //i.e, average of the root's of the heaps.
        if( maxheap.size() == minheap.size()) {
            return ((double)maxheap.peek() + (double)minheap.peek())/2 ;
        }
        //else median is middle element, i.e, root of the heap with one element more
        else if (maxheap.size() > minheap.size()){ return (double)maxheap.peek();}
        else{ return (double)minheap.peek();}

    }
    /**
     * String representation of the numbers and median
     * @return 
     */
    public String toString(){
        StringBuilder sb = new StringBuilder();
        sb.append("\n Median for the numbers : " );
        for(int i: maxheap){sb.append(" "+i); }
        for(int i: minheap){sb.append(" "+i); }
        sb.append(" is " + median()+"\n");
        return sb.toString();
    }

    /**
     * Adds all the array elements and returns the median.
     * @param array
     * @return
     */
    public double addArray(int[] array){
        for(int i=0; i<array.length ;i++){
            insert(array[i]);
        }
        return median();
    }

    /**
     * Just a test
     * @param N
     */
    public void test(int N){
        int[] array = InputGenerator.randomArray(N);
        System.out.println("Input array: \n"+Arrays.toString(array));
        addArray(array);
        System.out.println("Computed Median is :" + median());
        Arrays.sort(array);
        System.out.println("Sorted array: \n"+Arrays.toString(array));
        if(N%2==0){ System.out.println("Calculated Median is :" + (array[N/2] + array[(N/2)-1])/2.0);}
        else{System.out.println("Calculated Median is :" + array[N/2] +"\n");}
    }

    /**
     * Another testing utility
     */
    public void printInternal(){
        System.out.println("Less than median, max heap:" + maxheap);
        System.out.println("Greater than median, min heap:" + minheap);
    }

    //Inner class to generate input for basic testing
    private static class InputGenerator {

        public static int[] orderedArray(int N){
            int[] array = new int[N];
            for(int i=0; i<N; i++){
                array[i] = i;
            }
            return array;
        }

        public static int[] randomArray(int N){
            int[] array = new int[N];
            for(int i=0; i<N; i++){
                array[i] = (int)(Math.random()*N*N);
            }
            return array;
        }

        public static int readInt(String s){
            System.out.println(s);
            Scanner sc = new Scanner(System.in);
            return sc.nextInt();
        }
    }

    public static void main(String[] args){
        System.out.println("You got to stop the program MANUALLY!!");        
        while(true){
            MedianHeap testObj = new MedianHeap();
            testObj.test(InputGenerator.readInt("Enter size of the array:"));
            System.out.println(testObj);
        }
    }
}

你需要两个堆:一个最小堆和一个最大堆。每个堆包含大约一半的数据。最小堆中的每个元素都大于或等于中值,而最大堆中的每个元素都小于或等于中值。

当最小堆比最大堆多包含一个元素时,中值位于最小堆的顶部。当最大堆比最小堆多包含一个元素时,中值位于最大堆的顶部。

当两个堆包含相同数量的元素时,元素总数是偶数。 在这种情况下,你必须根据你对中位数的定义来选择:a)两个中位数的平均值;b)两个中位数中的较大者;c)较小者;d)随机选择任意一个。。。

每次插入时,都要将新元素与堆顶部的元素进行比较,以确定插入新元素的位置。如果新元素大于当前中值,则它将转到最小堆。如果它小于当前中值,则转到最大堆。那么你可能需要重新平衡。如果堆的大小因多个元素而异,请从包含多个元素的堆中提取最小/最大值,并将其插入到另一个堆中。

为了构造元素列表的中值堆,我们应该首先使用线性时间算法并找到中值。一旦中值已知,我们就可以根据中值向最小堆和最大堆添加元素。不需要平衡堆,因为中值将把元素的输入列表分成相等的两半。

如果提取元素,则可能需要通过将一个元素从一个堆移动到另一个堆来补偿大小更改。这样可以确保,在任何时候,两个堆都具有相同的大小,或者只因一个元素而不同。

完美平衡的二叉搜索树(BST)不是一个中间堆吗?诚然,即使是红黑色的bst也不总是完全平衡的,但它可能足够接近你的目的。日志(n)性能得到保证!

AVL trees比红黑bst更为稳定,因此它们更接近于真正的中间堆。

相关问题 更多 >

    热门问题