如何避免NumPy计算中的Kronecker积

2024-04-19 01:31:47 发布

您现在位置:Python中文网/ 问答频道 /正文

背景

生成随机权重列表后:

sizes = [784,30,10]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[1:])]

利用Numpy的Kronecker产品创建foo(带形状(900, 23520)):

^{pr2}$

然后,将foodata的切片相乘,即

bar = np.dot(foo,data[0])

其中data[0].shape(23520,),而{}是{}。在

问题

foo相当浪费。形状为(30,784)weights[0]如何以更灵活的方式用于与data[0]相乘?在

更一般地说,data[0]是形状为^{的数组的切片,因此乘法过程需要执行1666次。此外,数据数组接近稀疏,只有不到20%的条目是非零的。在

下面是我尝试过的循环:

for i in range(len(data)):
    foo = np.kron(np.identity(30),weights[0])
    bar = np.dot(foo,data[i])

Tags: in列表fordatafoonpbar切片
2条回答

你实际上是在做矩阵矩阵乘法,其中第一个因子是weights[0],第二个因子是data[i],分成30个相等的片,组成列。在

import numpy as np

sizes = [784,30,10]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[1:])]

k = 2
# create sparse data
data = np.maximum(np.random.uniform(-100, 1, (k, 23520)), 0)

foo = np.kron(np.identity(30),weights[0])

# This is the original loop as a list comprehension
bar = [np.dot(foo,d) for d in data]

# This is the equivalent using matrix multiplication.
# We can take advantage of the fact that the '@' operator
# can do batch matrix multiplication (it uses the last two
# dimensions as the matrix and all others as batch index).
# The reshape does the chopping up but gives us rows where columns
# are required, hence the first swapaxes.
# The second swapaxes is to make the result directly comparable to
# the `np.kron` based result.
bar2 = (weights[0] @ data.reshape(k, 30, 784).swapaxes(1, 2)).swapaxes(1, 2)

# Instead of letting numpy do the batching we can glue all the
# columns of all the second factors together into one matrix   
bar3 = (weights[0] @ data.reshape(-1, 784).T).T.reshape(k, -1)

# This last formulation works more or less unchanged on sparse data
from scipy import sparse
dsp = sparse.csr_matrix(data.reshape(-1, 784))
bar4 = (weights[0] @ dsp.T).T.reshape(k, -1)


print(np.allclose(bar, bar2.reshape(k, -1)))
print(np.allclose(bar, bar3))
print(np.allclose(bar, bar4))

印刷品:

^{pr2}$

诀窍是将data重塑为3D张量,然后使用^{}来对抗{},从而绕过{}创建,就像这样-

k = 30 # kernel size
data3D = data.reshape(data.shape[0],k,-1)
out = np.tensordot(data3D, weights[0], axes=(2,1)).reshape(-1,k**2)

在引擎盖下,tensordot使用转置轴、重塑形状,然后np.dot。因此,使用所有这些手工劳动来避免对tensordot的函数调用,我们将有一个,如下-

^{pr2}$

Related post to understand ^{}。在

样本运行

让我们用一个玩具例子来解释那些可能不了解问题的人会发生什么:

In [68]: # Toy setup and code run with original codes
    ...: k = 3 # kernel size, which is 30 in the original case
    ...: 
    ...: data = np.random.rand(4,6)
    ...: w0 = np.random.rand(3,2) # this is weights[0]
    ...: foo = np.kron(np.identity(k), w0)
    ...: output_first_row = foo.dot(data[0])

所以,问题是去掉foo的创建步骤,进入output_first_row,并对{}的所有行执行此操作。在

建议的解决方案是:

...: data3D = data.reshape(data.shape[0],k,-1)
...: vectorized_out = np.tensordot(data3D, w0, axes=(2,1)).reshape(-1,k**2)

让我们验证一下结果:

In [69]: output_first_row
Out[69]: array([ 0.11,  0.13,  0.34,  0.67,  0.53,  1.51,  0.17,  0.16,  0.44])

In [70]: vectorized_out
Out[70]: 
array([[ 0.11,  0.13,  0.34,  0.67,  0.53,  1.51,  0.17,  0.16,  0.44],
       [ 0.43,  0.23,  0.73,  0.43,  0.38,  1.05,  0.64,  0.49,  1.41],
       [ 0.57,  0.45,  1.3 ,  0.68,  0.51,  1.48,  0.45,  0.28,  0.85],
       [ 0.41,  0.35,  0.98,  0.4 ,  0.24,  0.75,  0.22,  0.28,  0.71]])

所有建议方法的运行时测试-

In [30]: import numpy as np

In [31]: sizes = [784,30,10]

In [32]: weights = [np.random.rand(y, x) for x, y in zip(sizes[:-1],sizes[1:])]

In [33]: data = np.random.rand(1666,23520)

In [37]: k = 30 # kernel size

# @Paul Panzer's soln
In [38]: %timeit (weights[0] @ data.reshape(-1, 30, 784).swapaxes(1, 2)).swapaxes(1, 2)
1 loops, best of 3: 707 ms per loop

In [39]: %timeit np.tensordot(data.reshape(data.shape[0],k,-1), weights[0], axes=(2,1)).reshape(-1,k**2)
10 loops, best of 3: 114 ms per loop

In [40]: %timeit data.reshape(-1,data.shape[1]//k).dot(weights[0].T).reshape(-1,k**2)
10 loops, best of 3: 118 ms per loop

^{}和下面的注释可能有助于理解tensordot如何更好地与tensors一起工作。在

相关问题 更多 >