如何用pylab和numpy将正弦曲线拟合到数据中?

2024-04-20 00:39:42 发布

您现在位置:Python中文网/ 问答频道 /正文


Tags: python
3条回答

您可以使用scipy中的least-square optimization函数将任意函数拟合到另一个函数。在拟合sin函数的情况下,要拟合的3个参数是偏移量(“a”)、振幅(“b”)和相位(“c”)。

只要对参数提供合理的第一次猜测,优化就应该收敛得很好。幸运的是,对于正弦函数,其中两个参数的第一次估计是很容易的:偏移量可以通过取数据的平均值和通过RMS(3*标准差/sqrt(2))得到的振幅来估计。

注:作为以后的编辑,还添加了频率拟合。这不是很好的工作(可能导致极不适合)。因此,根据您的判断,我的建议是不要使用频率拟合,除非频率误差小于百分之几。

这将导致以下代码:

import numpy as np
from scipy.optimize import leastsq
import pylab as plt

N = 1000 # number of data points
t = np.linspace(0, 4*np.pi, N)
f = 1.15247 # Optional!! Advised not to use
data = 3.0*np.sin(f*t+0.001) + 0.5 + np.random.randn(N) # create artificial data with noise

guess_mean = np.mean(data)
guess_std = 3*np.std(data)/(2**0.5)/(2**0.5)
guess_phase = 0
guess_freq = 1
guess_amp = 1

# we'll use this to plot our first estimate. This might already be good enough for you
data_first_guess = guess_std*np.sin(t+guess_phase) + guess_mean

# Define the function to optimize, in this case, we want to minimize the difference
# between the actual data and our "guessed" parameters
optimize_func = lambda x: x[0]*np.sin(x[1]*t+x[2]) + x[3] - data
est_amp, est_freq, est_phase, est_mean = leastsq(optimize_func, [guess_amp, guess_freq, guess_phase, guess_mean])[0]

# recreate the fitted curve using the optimized parameters
data_fit = est_amp*np.sin(est_freq*t+est_phase) + est_mean

# recreate the fitted curve using the optimized parameters

fine_t = np.arange(0,max(t),0.1)
data_fit=est_amp*np.sin(est_freq*fine_t+est_phase)+est_mean

plt.plot(t, data, '.')
plt.plot(t, data_first_guess, label='first guess')
plt.plot(fine_t, data_fit, label='after fitting')
plt.legend()
plt.show()

enter image description here

编辑:我假设你知道正弦波的周期数。如果你不喜欢,那就更难适应了。您可以尝试通过手动绘图猜测周期数,并尝试将其优化为您的第6个参数。

对我们来说更友好的是curvefit函数。这里有一个例子:

import numpy as np
from scipy.optimize import curve_fit
import pylab as plt

N = 1000 # number of data points
t = np.linspace(0, 4*np.pi, N)
data = 3.0*np.sin(t+0.001) + 0.5 + np.random.randn(N) # create artificial data with noise

guess_freq = 1
guess_amplitude = 3*np.std(data)/(2**0.5)
guess_phase = 0
guess_offset = np.mean(data)

p0=[guess_freq, guess_amplitude,
    guess_phase, guess_offset]

# create the function we want to fit
def my_sin(x, freq, amplitude, phase, offset):
    return np.sin(x * freq + phase) * amplitude + offset

# now do the fit
fit = curve_fit(my_sin, t, data, p0=p0)

# we'll use this to plot our first estimate. This might already be good enough for you
data_first_guess = my_sin(t, *p0)

# recreate the fitted curve using the optimized parameters
data_fit = my_sin(t, *fit[0])

plt.plot(data, '.')
plt.plot(data_fit, label='after fitting')
plt.plot(data_first_guess, label='first guess')
plt.legend()
plt.show()

这里有一个无参数拟合函数fit_sin(),不需要手动猜测频率:

import numpy, scipy.optimize

def fit_sin(tt, yy):
    '''Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc"'''
    tt = numpy.array(tt)
    yy = numpy.array(yy)
    ff = numpy.fft.fftfreq(len(tt), (tt[1]-tt[0]))   # assume uniform spacing
    Fyy = abs(numpy.fft.fft(yy))
    guess_freq = abs(ff[numpy.argmax(Fyy[1:])+1])   # excluding the zero frequency "peak", which is related to offset
    guess_amp = numpy.std(yy) * 2.**0.5
    guess_offset = numpy.mean(yy)
    guess = numpy.array([guess_amp, 2.*numpy.pi*guess_freq, 0., guess_offset])

    def sinfunc(t, A, w, p, c):  return A * numpy.sin(w*t + p) + c
    popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess)
    A, w, p, c = popt
    f = w/(2.*numpy.pi)
    fitfunc = lambda t: A * numpy.sin(w*t + p) + c
    return {"amp": A, "omega": w, "phase": p, "offset": c, "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": numpy.max(pcov), "rawres": (guess,popt,pcov)}

初始频率的猜测是由频域中的峰值频率通过FFT给出的。假设只有一个主频(而不是零频峰值),拟合结果几乎是完美的。

import pylab as plt

N, amp, omega, phase, offset, noise = 500, 1., 2., .5, 4., 3
#N, amp, omega, phase, offset, noise = 50, 1., .4, .5, 4., .2
#N, amp, omega, phase, offset, noise = 200, 1., 20, .5, 4., 1
tt = numpy.linspace(0, 10, N)
tt2 = numpy.linspace(0, 10, 10*N)
yy = amp*numpy.sin(omega*tt + phase) + offset
yynoise = yy + noise*(numpy.random.random(len(tt))-0.5)

res = fit_sin(tt, yynoise)
print( "Amplitude=%(amp)s, Angular freq.=%(omega)s, phase=%(phase)s, offset=%(offset)s, Max. Cov.=%(maxcov)s" % res )

plt.plot(tt, yy, "-k", label="y", linewidth=2)
plt.plot(tt, yynoise, "ok", label="y with noise")
plt.plot(tt2, res["fitfunc"](tt2), "r-", label="y fit curve", linewidth=2)
plt.legend(loc="best")
plt.show()

即使在高噪音的情况下,效果也很好:

Amplitude=1.00660540618, Angular freq.=2.03370472482, phase=0.360276844224, offset=3.95747467506, Max. Cov.=0.0122923578658

With noiseLow frequencyHigh frequency

相关问题 更多 >