有向图上最小生成树的Chu-Liu Edmonds算法

4 投票
2 回答
6329 浏览
提问于 2025-04-18 08:15

我想在一个加权有向图上找到一个最小生成树(MST)。我一直在尝试使用Chu-Liu/Edmond算法,我已经在Python中实现了这个算法(代码在下面)。关于这个算法的简单明了的描述可以在这里找到。我有两个问题。

  1. Edmond算法能保证找到解决方案吗?

    我担心在去掉一个循环后会产生另一个循环。如果发生这种情况,算法就会一直尝试去掉循环,永远无法结束。

    我似乎找到了一个这样的例子。输入图在下面的代码中展示。算法永远无法完成,因为它在循环[1,2]和[1,3]之间切换,以及[5,4]和[5,6]之间切换。为了解决循环[5,4]而添加到图中的边又产生了循环[5,6],反之亦然,对于[1,2]和[1,3]也是如此。

    我应该说明,我不确定我的实现是否正确。

  2. 为了解决这个问题,我引入了一个临时的补丁。当去掉一条边以消除一个循环时,我会将这条边永久性地从我们正在寻找MST的基础图G中移除。因此,这条边不能再被添加,这应该能防止算法卡住。做了这个改动后,我能保证找到一个MST吗?

    我怀疑可能会出现一种特殊情况,导致这个步骤得到的结果不是MST,但我还没能想到一个这样的例子。在我尝试的所有简单测试案例中,这个方法似乎都有效。

代码:

import sys

# --------------------------------------------------------------------------------- #

def _reverse(graph):
    r = {}
    for src in graph:
        for (dst,c) in graph[src].items():
            if dst in r:
                r[dst][src] = c
            else:
                r[dst] = { src : c }
    return r

# Finds all cycles in graph using Tarjan's algorithm
def strongly_connected_components(graph):
    """
    Tarjan's Algorithm (named for its discoverer, Robert Tarjan) is a graph theory algorithm
    for finding the strongly connected components of a graph.

    Based on: http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
    """

    index_counter = [0]
    stack = []
    lowlinks = {}
    index = {}
    result = []

    def strongconnect(node):
        # set the depth index for this node to the smallest unused index
        index[node] = index_counter[0]
        lowlinks[node] = index_counter[0]
        index_counter[0] += 1
        stack.append(node)

        # Consider successors of `node`
        try:
            successors = graph[node]
        except:
            successors = []
        for successor in successors:
            if successor not in lowlinks:
                # Successor has not yet been visited; recurse on it
                strongconnect(successor)
                lowlinks[node] = min(lowlinks[node],lowlinks[successor])
            elif successor in stack:
                # the successor is in the stack and hence in the current strongly connected component (SCC)
                lowlinks[node] = min(lowlinks[node],index[successor])

        # If `node` is a root node, pop the stack and generate an SCC
        if lowlinks[node] == index[node]:
            connected_component = []

            while True:
                successor = stack.pop()
                connected_component.append(successor)
                if successor == node: break
            component = tuple(connected_component)
            # storing the result
            result.append(component)

    for node in graph:
        if node not in lowlinks:
            strongconnect(node)

    return result

def _mergeCycles(cycle,G,RG,g,rg):
    allInEdges = [] # all edges entering cycle from outside cycle
    minInternal = None
    minInternalWeight = sys.maxint

    # Find minimal internal edge weight
    for n in cycle:
        for e in RG[n]:
            if e in cycle:
                if minInternal is None or RG[n][e] < minInternalWeight:
                    minInternal = (n,e)
                    minInternalWeight = RG[n][e]
                    continue
            else:
                allInEdges.append((n,e)) # edge enters cycle

    # Find the incoming edge with minimum modified cost
    # modified cost c(i,k) = c(i,j) - (c(x_j, j) - min{j}(c(x_j, j)))
    minExternal = None
    minModifiedWeight = 0
    for j,i in allInEdges: # j is vertex in cycle, i is candidate vertex outside cycle
        xj, weight_xj_j = rg[j].popitem() # xj is vertex in cycle that currently goes to j
        rg[j][xj] = weight_xj_j # put item back in dictionary
        w = RG[j][i] - (weight_xj_j - minInternalWeight) # c(i,k) = c(i,j) - (c(x_j, j) - min{j}(c(x_j, j)))
        if minExternal is None or w <= minModifiedWeight:
            minExternal = (j,i)
            minModifiedWeight = w

    w = RG[minExternal[0]][minExternal[1]] # weight of edge entering cycle
    xj,_ = rg[minExternal[0]].popitem() # xj is vertex in cycle that currently goes to j
    rem = (minExternal[0], xj) # edge to remove
    rg[minExternal[0]].clear() # popitem() should delete the one edge into j, but we ensure that

    # Remove offending edge from RG
    # RG[minExternal[0]].pop(xj, None) #highly experimental. throw away the offending edge, so we never get it again

    if rem[1] in g:
        if rem[0] in g[rem[1]]:
            del g[rem[1]][rem[0]]
    if minExternal[1] in g:
        g[minExternal[1]][minExternal[0]] = w
    else:
        g[minExternal[1]] = { minExternal[0] : w }

    rg = _reverse(g)

# --------------------------------------------------------------------------------- #

def mst(root,G):
    """ The Chu-Liu/Edmond's algorithm

    arguments:

    root - the root of the MST
    G - the graph in which the MST lies

    returns: a graph representation of the MST

    Graph representation is the same as the one found at:
    http://code.activestate.com/recipes/119466/

    Explanation is copied verbatim here:

    The input graph G is assumed to have the following
    representation: A vertex can be any object that can
    be used as an index into a dictionary.  G is a
    dictionary, indexed by vertices.  For any vertex v,
    G[v] is itself a dictionary, indexed by the neighbors
    of v.  For any edge v->w, G[v][w] is the length of
    the edge.
    """

    RG = _reverse(G)

    g = {}
    for n in RG:
        if len(RG[n]) == 0:
            continue
        minimum = sys.maxint
        s,d = None,None

        for e in RG[n]:
            if RG[n][e] < minimum:
                minimum = RG[n][e]
                s,d = n,e

        if d in g:
            g[d][s] = RG[s][d]
        else:
            g[d] = { s : RG[s][d] }

    cycles = [list(c) for c in strongly_connected_components(g)]

    cycles_exist = True
    while cycles_exist:

        cycles_exist = False
        cycles = [list(c) for c in strongly_connected_components(g)]
        rg = _reverse(g)

        for cycle in cycles:

            if root in cycle:
                continue

            if len(cycle) == 1:
                continue

            _mergeCycles(cycle, G, RG, g, rg)
            cycles_exist = True

    return g

# --------------------------------------------------------------------------------- #

if __name__ == "__main__":

    # an example of an input that works
    root = 0
    g = {0: {1: 23, 2: 22, 3: 22}, 1: {2: 1, 3: 1}, 3: {1: 1, 2: 0}}

    # an example of an input that causes infinite cycle
    root = 0
    g = {0: {1: 17, 2: 16, 3: 19, 4: 16, 5: 16, 6: 18}, 1: {2: 3, 3: 3, 4: 11, 5: 10, 6: 12}, 2: {1: 3, 3: 4, 4: 8, 5: 8, 6: 11}, 3: {1: 3, 2: 4, 4: 12, 5: 11, 6: 14}, 4: {1: 11, 2: 8, 3: 12, 5: 6, 6: 10}, 5: {1: 10, 2: 8, 3: 11, 4: 6, 6: 4}, 6: {1: 12, 2: 11, 3: 14, 4: 10, 5: 4}}

    h = mst(int(root),g)

    print h

    for s in h:
        for t in h[s]:
            print "%d-%d" % (s,t)

2 个回答

0

这不是直接回答你问题的内容,但下面这个递归实现的Edmond算法似乎运行得很正常:

graph.py

注意,在这个实现中,mst()方法返回的是一个最大生成树。希望这段代码能作为参考,帮助你调整自己的实现。

9

不要随便打补丁。我承认,实现缩合和解缩合的逻辑并不直观,而且在某些情况下使用递归也不太好,所以这里有一个合适的Python实现,可以达到生产级别的质量。我们不是在每一层递归时就进行解缩合,而是把这个步骤放到最后,使用深度优先搜索,这样就避免了递归。(这个修改的正确性最终是基于互补松弛性,这是线性规划理论的一部分。)

下面的命名规则是,_rep表示一个超级节点(也就是一个或多个缩合节点的块)。

#!/usr/bin/env python3
from collections import defaultdict, namedtuple


Arc = namedtuple('Arc', ('tail', 'weight', 'head'))


def min_spanning_arborescence(arcs, sink):
    good_arcs = []
    quotient_map = {arc.tail: arc.tail for arc in arcs}
    quotient_map[sink] = sink
    while True:
        min_arc_by_tail_rep = {}
        successor_rep = {}
        for arc in arcs:
            if arc.tail == sink:
                continue
            tail_rep = quotient_map[arc.tail]
            head_rep = quotient_map[arc.head]
            if tail_rep == head_rep:
                continue
            if tail_rep not in min_arc_by_tail_rep or min_arc_by_tail_rep[tail_rep].weight > arc.weight:
                min_arc_by_tail_rep[tail_rep] = arc
                successor_rep[tail_rep] = head_rep
        cycle_reps = find_cycle(successor_rep, sink)
        if cycle_reps is None:
            good_arcs.extend(min_arc_by_tail_rep.values())
            return spanning_arborescence(good_arcs, sink)
        good_arcs.extend(min_arc_by_tail_rep[cycle_rep] for cycle_rep in cycle_reps)
        cycle_rep_set = set(cycle_reps)
        cycle_rep = cycle_rep_set.pop()
        quotient_map = {node: cycle_rep if node_rep in cycle_rep_set else node_rep for node, node_rep in quotient_map.items()}


def find_cycle(successor, sink):
    visited = {sink}
    for node in successor:
        cycle = []
        while node not in visited:
            visited.add(node)
            cycle.append(node)
            node = successor[node]
        if node in cycle:
            return cycle[cycle.index(node):]
    return None


def spanning_arborescence(arcs, sink):
    arcs_by_head = defaultdict(list)
    for arc in arcs:
        if arc.tail == sink:
            continue
        arcs_by_head[arc.head].append(arc)
    solution_arc_by_tail = {}
    stack = arcs_by_head[sink]
    while stack:
        arc = stack.pop()
        if arc.tail in solution_arc_by_tail:
            continue
        solution_arc_by_tail[arc.tail] = arc
        stack.extend(arcs_by_head[arc.tail])
    return solution_arc_by_tail


print(min_spanning_arborescence([Arc(1, 17, 0), Arc(2, 16, 0), Arc(3, 19, 0), Arc(4, 16, 0), Arc(5, 16, 0), Arc(6, 18, 0), Arc(2, 3, 1), Arc(3, 3, 1), Arc(4, 11, 1), Arc(5, 10, 1), Arc(6, 12, 1), Arc(1, 3, 2), Arc(3, 4, 2), Arc(4, 8, 2), Arc(5, 8, 2), Arc(6, 11, 2), Arc(1, 3, 3), Arc(2, 4, 3), Arc(4, 12, 3), Arc(5, 11, 3), Arc(6, 14, 3), Arc(1, 11, 4), Arc(2, 8, 4), Arc(3, 12, 4), Arc(5, 6, 4), Arc(6, 10, 4), Arc(1, 10, 5), Arc(2, 8, 5), Arc(3, 11, 5), Arc(4, 6, 5), Arc(6, 4, 5), Arc(1, 12, 6), Arc(2, 11, 6), Arc(3, 14, 6), Arc(4, 10, 6), Arc(5, 4, 6)], 0))

撰写回答