有向图上最小生成树的Chu-Liu Edmonds算法
我想在一个加权有向图上找到一个最小生成树(MST)。我一直在尝试使用Chu-Liu/Edmond算法,我已经在Python中实现了这个算法(代码在下面)。关于这个算法的简单明了的描述可以在这里找到。我有两个问题。
Edmond算法能保证找到解决方案吗?
我担心在去掉一个循环后会产生另一个循环。如果发生这种情况,算法就会一直尝试去掉循环,永远无法结束。
我似乎找到了一个这样的例子。输入图在下面的代码中展示。算法永远无法完成,因为它在循环[1,2]和[1,3]之间切换,以及[5,4]和[5,6]之间切换。为了解决循环[5,4]而添加到图中的边又产生了循环[5,6],反之亦然,对于[1,2]和[1,3]也是如此。
我应该说明,我不确定我的实现是否正确。
为了解决这个问题,我引入了一个临时的补丁。当去掉一条边以消除一个循环时,我会将这条边永久性地从我们正在寻找MST的基础图G中移除。因此,这条边不能再被添加,这应该能防止算法卡住。做了这个改动后,我能保证找到一个MST吗?
我怀疑可能会出现一种特殊情况,导致这个步骤得到的结果不是MST,但我还没能想到一个这样的例子。在我尝试的所有简单测试案例中,这个方法似乎都有效。
代码:
import sys
# --------------------------------------------------------------------------------- #
def _reverse(graph):
r = {}
for src in graph:
for (dst,c) in graph[src].items():
if dst in r:
r[dst][src] = c
else:
r[dst] = { src : c }
return r
# Finds all cycles in graph using Tarjan's algorithm
def strongly_connected_components(graph):
"""
Tarjan's Algorithm (named for its discoverer, Robert Tarjan) is a graph theory algorithm
for finding the strongly connected components of a graph.
Based on: http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
"""
index_counter = [0]
stack = []
lowlinks = {}
index = {}
result = []
def strongconnect(node):
# set the depth index for this node to the smallest unused index
index[node] = index_counter[0]
lowlinks[node] = index_counter[0]
index_counter[0] += 1
stack.append(node)
# Consider successors of `node`
try:
successors = graph[node]
except:
successors = []
for successor in successors:
if successor not in lowlinks:
# Successor has not yet been visited; recurse on it
strongconnect(successor)
lowlinks[node] = min(lowlinks[node],lowlinks[successor])
elif successor in stack:
# the successor is in the stack and hence in the current strongly connected component (SCC)
lowlinks[node] = min(lowlinks[node],index[successor])
# If `node` is a root node, pop the stack and generate an SCC
if lowlinks[node] == index[node]:
connected_component = []
while True:
successor = stack.pop()
connected_component.append(successor)
if successor == node: break
component = tuple(connected_component)
# storing the result
result.append(component)
for node in graph:
if node not in lowlinks:
strongconnect(node)
return result
def _mergeCycles(cycle,G,RG,g,rg):
allInEdges = [] # all edges entering cycle from outside cycle
minInternal = None
minInternalWeight = sys.maxint
# Find minimal internal edge weight
for n in cycle:
for e in RG[n]:
if e in cycle:
if minInternal is None or RG[n][e] < minInternalWeight:
minInternal = (n,e)
minInternalWeight = RG[n][e]
continue
else:
allInEdges.append((n,e)) # edge enters cycle
# Find the incoming edge with minimum modified cost
# modified cost c(i,k) = c(i,j) - (c(x_j, j) - min{j}(c(x_j, j)))
minExternal = None
minModifiedWeight = 0
for j,i in allInEdges: # j is vertex in cycle, i is candidate vertex outside cycle
xj, weight_xj_j = rg[j].popitem() # xj is vertex in cycle that currently goes to j
rg[j][xj] = weight_xj_j # put item back in dictionary
w = RG[j][i] - (weight_xj_j - minInternalWeight) # c(i,k) = c(i,j) - (c(x_j, j) - min{j}(c(x_j, j)))
if minExternal is None or w <= minModifiedWeight:
minExternal = (j,i)
minModifiedWeight = w
w = RG[minExternal[0]][minExternal[1]] # weight of edge entering cycle
xj,_ = rg[minExternal[0]].popitem() # xj is vertex in cycle that currently goes to j
rem = (minExternal[0], xj) # edge to remove
rg[minExternal[0]].clear() # popitem() should delete the one edge into j, but we ensure that
# Remove offending edge from RG
# RG[minExternal[0]].pop(xj, None) #highly experimental. throw away the offending edge, so we never get it again
if rem[1] in g:
if rem[0] in g[rem[1]]:
del g[rem[1]][rem[0]]
if minExternal[1] in g:
g[minExternal[1]][minExternal[0]] = w
else:
g[minExternal[1]] = { minExternal[0] : w }
rg = _reverse(g)
# --------------------------------------------------------------------------------- #
def mst(root,G):
""" The Chu-Liu/Edmond's algorithm
arguments:
root - the root of the MST
G - the graph in which the MST lies
returns: a graph representation of the MST
Graph representation is the same as the one found at:
http://code.activestate.com/recipes/119466/
Explanation is copied verbatim here:
The input graph G is assumed to have the following
representation: A vertex can be any object that can
be used as an index into a dictionary. G is a
dictionary, indexed by vertices. For any vertex v,
G[v] is itself a dictionary, indexed by the neighbors
of v. For any edge v->w, G[v][w] is the length of
the edge.
"""
RG = _reverse(G)
g = {}
for n in RG:
if len(RG[n]) == 0:
continue
minimum = sys.maxint
s,d = None,None
for e in RG[n]:
if RG[n][e] < minimum:
minimum = RG[n][e]
s,d = n,e
if d in g:
g[d][s] = RG[s][d]
else:
g[d] = { s : RG[s][d] }
cycles = [list(c) for c in strongly_connected_components(g)]
cycles_exist = True
while cycles_exist:
cycles_exist = False
cycles = [list(c) for c in strongly_connected_components(g)]
rg = _reverse(g)
for cycle in cycles:
if root in cycle:
continue
if len(cycle) == 1:
continue
_mergeCycles(cycle, G, RG, g, rg)
cycles_exist = True
return g
# --------------------------------------------------------------------------------- #
if __name__ == "__main__":
# an example of an input that works
root = 0
g = {0: {1: 23, 2: 22, 3: 22}, 1: {2: 1, 3: 1}, 3: {1: 1, 2: 0}}
# an example of an input that causes infinite cycle
root = 0
g = {0: {1: 17, 2: 16, 3: 19, 4: 16, 5: 16, 6: 18}, 1: {2: 3, 3: 3, 4: 11, 5: 10, 6: 12}, 2: {1: 3, 3: 4, 4: 8, 5: 8, 6: 11}, 3: {1: 3, 2: 4, 4: 12, 5: 11, 6: 14}, 4: {1: 11, 2: 8, 3: 12, 5: 6, 6: 10}, 5: {1: 10, 2: 8, 3: 11, 4: 6, 6: 4}, 6: {1: 12, 2: 11, 3: 14, 4: 10, 5: 4}}
h = mst(int(root),g)
print h
for s in h:
for t in h[s]:
print "%d-%d" % (s,t)
2 个回答
这不是直接回答你问题的内容,但下面这个递归实现的Edmond算法似乎运行得很正常:
注意,在这个实现中,mst()方法返回的是一个最大生成树。希望这段代码能作为参考,帮助你调整自己的实现。
不要随便打补丁。我承认,实现缩合和解缩合的逻辑并不直观,而且在某些情况下使用递归也不太好,所以这里有一个合适的Python实现,可以达到生产级别的质量。我们不是在每一层递归时就进行解缩合,而是把这个步骤放到最后,使用深度优先搜索,这样就避免了递归。(这个修改的正确性最终是基于互补松弛性,这是线性规划理论的一部分。)
下面的命名规则是,_rep
表示一个超级节点(也就是一个或多个缩合节点的块)。
#!/usr/bin/env python3
from collections import defaultdict, namedtuple
Arc = namedtuple('Arc', ('tail', 'weight', 'head'))
def min_spanning_arborescence(arcs, sink):
good_arcs = []
quotient_map = {arc.tail: arc.tail for arc in arcs}
quotient_map[sink] = sink
while True:
min_arc_by_tail_rep = {}
successor_rep = {}
for arc in arcs:
if arc.tail == sink:
continue
tail_rep = quotient_map[arc.tail]
head_rep = quotient_map[arc.head]
if tail_rep == head_rep:
continue
if tail_rep not in min_arc_by_tail_rep or min_arc_by_tail_rep[tail_rep].weight > arc.weight:
min_arc_by_tail_rep[tail_rep] = arc
successor_rep[tail_rep] = head_rep
cycle_reps = find_cycle(successor_rep, sink)
if cycle_reps is None:
good_arcs.extend(min_arc_by_tail_rep.values())
return spanning_arborescence(good_arcs, sink)
good_arcs.extend(min_arc_by_tail_rep[cycle_rep] for cycle_rep in cycle_reps)
cycle_rep_set = set(cycle_reps)
cycle_rep = cycle_rep_set.pop()
quotient_map = {node: cycle_rep if node_rep in cycle_rep_set else node_rep for node, node_rep in quotient_map.items()}
def find_cycle(successor, sink):
visited = {sink}
for node in successor:
cycle = []
while node not in visited:
visited.add(node)
cycle.append(node)
node = successor[node]
if node in cycle:
return cycle[cycle.index(node):]
return None
def spanning_arborescence(arcs, sink):
arcs_by_head = defaultdict(list)
for arc in arcs:
if arc.tail == sink:
continue
arcs_by_head[arc.head].append(arc)
solution_arc_by_tail = {}
stack = arcs_by_head[sink]
while stack:
arc = stack.pop()
if arc.tail in solution_arc_by_tail:
continue
solution_arc_by_tail[arc.tail] = arc
stack.extend(arcs_by_head[arc.tail])
return solution_arc_by_tail
print(min_spanning_arborescence([Arc(1, 17, 0), Arc(2, 16, 0), Arc(3, 19, 0), Arc(4, 16, 0), Arc(5, 16, 0), Arc(6, 18, 0), Arc(2, 3, 1), Arc(3, 3, 1), Arc(4, 11, 1), Arc(5, 10, 1), Arc(6, 12, 1), Arc(1, 3, 2), Arc(3, 4, 2), Arc(4, 8, 2), Arc(5, 8, 2), Arc(6, 11, 2), Arc(1, 3, 3), Arc(2, 4, 3), Arc(4, 12, 3), Arc(5, 11, 3), Arc(6, 14, 3), Arc(1, 11, 4), Arc(2, 8, 4), Arc(3, 12, 4), Arc(5, 6, 4), Arc(6, 10, 4), Arc(1, 10, 5), Arc(2, 8, 5), Arc(3, 11, 5), Arc(4, 6, 5), Arc(6, 4, 5), Arc(1, 12, 6), Arc(2, 11, 6), Arc(3, 14, 6), Arc(4, 10, 6), Arc(5, 4, 6)], 0))