使用gensim进行LDA主题建模时出现IndexError

2 投票
1 回答
2527 浏览
提问于 2025-04-18 07:31

有一个帖子提到的问题和我的很像,但没有提供可以复现的代码。

我写这个脚本的目的是为了尽可能节省内存。所以我尝试创建一个叫做 corpus() 的类,想利用gensim的功能。然而,在创建 lda = models.ldamodel.LdaModel(corpus_tfidf, id2word=checker.dictionary, num_topics=int(options.number_of_topics)) 时,我遇到了一个IndexError,我不知道该怎么解决。

我使用的文档和gensim教程中的一样,我把它们放在了tutorial_example.txt里:

$ cat tutorial_example.txt 
Human machine interface for lab abc computer applications
A survey of user opinion of computer system response time
The EPS user interface management system
System and human system engineering testing of EPS
Relation of user perceived response time to error measurement
The generation of random binary unordered trees
The intersection graph of paths in trees
Graph minors IV Widths of trees and well quasi ordering
Graph minors A survey

收到的错误

$./gensim_topic_modeling.py -mn2 -w'english' -l1 tutorial_example.txt 
Traceback (most recent call last):
  File "./gensim_topic_modeling.py", line 98, in <module>
    lda = models.ldamodel.LdaModel(corpus_tfidf, id2word=checker.dictionary, num_topics=int(options.number_of_topics))
  File "/Users/me/anaconda/lib/python2.7/site-packages/gensim/models/ldamodel.py", line 306, in __init__
    self.update(corpus)
  File "/Users/me/anaconda/lib/python2.7/site-packages/gensim/models/ldamodel.py", line 543, in update
    self.log_perplexity(chunk, total_docs=lencorpus)
  File "/Users/me/anaconda/lib/python2.7/site-packages/gensim/models/ldamodel.py", line 454, in log_perplexity
    perwordbound = self.bound(chunk, subsample_ratio=subsample_ratio) / (subsample_ratio * corpus_words)
  File "/Users/me/anaconda/lib/python2.7/site-packages/gensim/models/ldamodel.py", line 630, in bound
    gammad, _ = self.inference([doc])
  File "/Users/me/anaconda/lib/python2.7/site-packages/gensim/models/ldamodel.py", line 366, in inference
    expElogbetad = self.expElogbeta[:, ids]
IndexError: index 7 is out of bounds for axis 1 with size 7

下面是 gensim_topic_modeling.py 脚本:

##gensim_topic_modeling.py

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import sys
import re
import codecs
import logging
import fileinput
from operator import *
from itertools import *
from sklearn.cluster import KMeans
from gensim import corpora, models, similarities, matutils
import argparse
from nltk.corpus import stopwords

reload(sys)
sys.stdout = codecs.getwriter('utf-8')(sys.stdout)
sys.stdin = codecs.getreader('utf-8')(sys.stdin)


##defs

def stop_word_gen():
    nltk_langs=['danish', 'dutch', 'english', 'french', 'german', 'italian','norwegian', 'portuguese', 'russian', 'spanish', 'swedish']
    stoplist = []
    for lang in options.stop_langs.split(","):
        if lang not in nltk_langs:
            sys.stderr.write('\n'+"Language {0} not supported".format(lang)+'\n')
            continue
        stoplist.extend(stopwords.words(lang))
    return stoplist


def clean_texts(texts):
    # remove tokens that appear only once
    all_tokens = sum(texts, [])
    tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
    return [[word for word in text if word not in tokens_once] for text in texts]

##class

class corpus(object):
    """sparse vector matrix and dictionary"""
    def __iter__(self):
        first=True
        for line in fileinput.FileInput(options.input, openhook=fileinput.hook_encoded("utf-8")):
            # assume there's one document per line; tokenizer option determines how to split
            if options.space_tokenizer:
                rl = re.compile('\s+', re.UNICODE).split(unicode(line,'utf-8'))
            else:
                rl = re.compile('\W+', re.UNICODE).split(tagRE.sub(' ',line)) 
            # create dictionary
            tokens=[token.strip().lower() for token in rl if token != '' and token.strip().lower() not in stoplist]
            if first:
                first=False
                self.dictionary=corpora.Dictionary([tokens])
            else:
                self.dictionary.add_documents([tokens])
                self.dictionary.compactify
            yield self.dictionary.doc2bow(tokens)


##main 

if __name__ == '__main__':
    ##parser
    parser = argparse.ArgumentParser(
                description="Topic model from a column of text.  Each line is a document in the corpus")
    parser.add_argument("input", metavar="args")
    parser.add_argument("-l", "--document-frequency-limit", dest="doc_freq_limit", default=1,
                help="Remove all tokens less than or equal to limit (default 1)")
    parser.add_argument("-m", "--create-model", dest="create_model", default=False, action="store_true",
                help="Create and save a model from existing dictionary and input corpus.")
    parser.add_argument("-n", "--number-of-topics", dest="number_of_topics", default=2,
                help="Number of topics (default 2)")
    parser.add_argument("-t", "--space-tokenizer", dest="space_tokenizer", default=False, action="store_true", 
                help="Use alternate whitespace tokenizer")
    parser.add_argument("-w", "--stop-word-languages", dest="stop_langs", default="danish,dutch,english,french,german,italian,norwegian,portuguese,russian,spanish,swedish",
                help="Desired languages for stopword lists")
    options = parser.parse_args()

    ##globals

    stoplist=set(stop_word_gen())  
    tagRE = re.compile(r'<.*?>', re.UNICODE)    # Remove xml/html tags
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO, filename="topic-modeling-log")
    logr = logging.getLogger("topic_model")
    logr.info("#"*15 + " started " + "#"*15)

    ##instance of class 

    checker=corpus()
    logr.info("#"*15 + " SPARSE MATRIX (pre-filter)" + "#"*15)

    ##view sparse matrix and dictionary

    for vector in checker: 
        logr.info(vector)
    logr.info("#"*15 + " DICTIONARY (pre-filter)" + "#"*15)
    logr.info(checker.dictionary)
    logr.info(checker.dictionary.token2id)
    #filter
    checker.dictionary.filter_extremes(no_below=int(options.doc_freq_limit)+1)
    logr.info("#"*15 + " DICTIONARY (post-filter)" + "#"*15)
    logr.info(checker.dictionary)
    logr.info(checker.dictionary.token2id)

    ##Create lda model

    if options.create_model:     
        tfidf = models.TfidfModel(checker,normalize=False)
        print tfidf
        logr.info("#"*15 + " corpus_tfidf " + "#"*15)
        corpus_tfidf = tfidf[checker]
        logr.info("#"*15 + " lda " + "#"*15)
        lda = models.ldamodel.LdaModel(corpus_tfidf, id2word=checker.dictionary, num_topics=int(options.number_of_topics))
        logr.info("#"*15 + " corpus_lda " + "#"*15)
        corpus_lda = lda[corpus_tfidf] 

        ##Evaluate topics based on threshold

        scores = list(chain(*[[score for topic,score in topic] \
                      for topic in [doc for doc in corpus_lda]]))
        threshold = sum(scores)/len(scores)
        print "threshold:",threshold
        print
        cluster1 = [j for i,j in zip(corpus_lda,documents) if i[0][1] > threshold]
        cluster2 = [j for i,j in zip(corpus_lda,documents) if i[1][1] > threshold]
        cluster3 = [j for i,j in zip(corpus_lda,documents) if i[2][1] > threshold]

生成的 topic-modeling-log 文件如下。非常感谢任何帮助!

topic-modeling-log

2014-05-25 02:58:50,482 : INFO : ############### started ###############
2014-05-25 02:58:50,483 : INFO : ############### SPARSE MATRIX (pre-filter)###############
2014-05-25 02:58:50,483 : INFO : adding document #0 to Dictionary(0 unique tokens: [])
2014-05-25 02:58:50,483 : INFO : built Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...) from 1 documents (total 7 corpus positions)
2014-05-25 02:58:50,483 : INFO : [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)]
2014-05-25 02:58:50,483 : INFO : adding document #0 to Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...)
2014-05-25 02:58:50,483 : INFO : built Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...) from 2 documents (total 14 corpus positions)
2014-05-25 02:58:50,483 : INFO : [(2, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1)]
2014-05-25 02:58:50,483 : INFO : adding document #0 to Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...)
2014-05-25 02:58:50,484 : INFO : built Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...) from 3 documents (total 19 corpus positions)
2014-05-25 02:58:50,484 : INFO : [(4, 1), (10, 1), (12, 1), (13, 1), (14, 1)]
2014-05-25 02:58:50,484 : INFO : adding document #0 to Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...)
2014-05-25 02:58:50,484 : INFO : built Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...) from 4 documents (total 25 corpus positions)
2014-05-25 02:58:50,484 : INFO : [(3, 1), (10, 2), (13, 1), (15, 1), (16, 1)]
2014-05-25 02:58:50,484 : INFO : adding document #0 to Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...)
2014-05-25 02:58:50,484 : INFO : built Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...) from 5 documents (total 32 corpus positions)
2014-05-25 02:58:50,484 : INFO : [(8, 1), (11, 1), (12, 1), (17, 1), (18, 1), (19, 1), (20, 1)]
2014-05-25 02:58:50,484 : INFO : adding document #0 to Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...)
2014-05-25 02:58:50,484 : INFO : built Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 6 documents (total 37 corpus positions)
2014-05-25 02:58:50,484 : INFO : [(21, 1), (22, 1), (23, 1), (24, 1), (25, 1)]
2014-05-25 02:58:50,485 : INFO : adding document #0 to Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,485 : INFO : built Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 7 documents (total 41 corpus positions)
2014-05-25 02:58:50,485 : INFO : [(24, 1), (26, 1), (27, 1), (28, 1)]
2014-05-25 02:58:50,485 : INFO : adding document #0 to Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,485 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 8 documents (total 49 corpus positions)
2014-05-25 02:58:50,485 : INFO : [(24, 1), (26, 1), (29, 1), (30, 1), (31, 1), (32, 1), (33, 1), (34, 1)]
2014-05-25 02:58:50,485 : INFO : adding document #0 to Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...)
2014-05-25 02:58:50,485 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 9 documents (total 52 corpus positions)
2014-05-25 02:58:50,485 : INFO : [(9, 1), (26, 1), (30, 1)]
2014-05-25 02:58:50,485 : INFO : ############### DICTIONARY (pre-filter)###############
2014-05-25 02:58:50,485 : INFO : Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...)
2014-05-25 02:58:50,485 : INFO : {'minors': 30, 'generation': 22, 'testing': 16, 'iv': 29, 'engineering': 15, 'computer': 2, 'relation': 20, 'human': 3, 'measurement': 18, 'unordered': 25, 'binary': 21, 'abc': 0, 'ordering': 31, 'graph': 26, 'system': 10, 'machine': 6, 'quasi': 32, 'random': 23, 'paths': 28, 'error': 17, 'trees': 24, 'lab': 5, 'applications': 1, 'management': 14, 'user': 12, 'interface': 4, 'intersection': 27, 'response': 8, 'perceived': 19, 'widths': 34, 'well': 33, 'eps': 13, 'survey': 9, 'time': 11, 'opinion': 7}
2014-05-25 02:58:50,486 : INFO : keeping 12 tokens which were in no less than 2 and no more than 4 (=50.0%) documents
2014-05-25 02:58:50,486 : INFO : resulting dictionary: Dictionary(12 unique tokens: ['minors', 'graph', 'system', 'trees', 'eps']...)
2014-05-25 02:58:50,486 : INFO : ############### DICTIONARY (post-filter)###############
2014-05-25 02:58:50,486 : INFO : Dictionary(12 unique tokens: ['minors', 'graph', 'system', 'trees', 'eps']...)
2014-05-25 02:58:50,486 : INFO : {'minors': 0, 'graph': 1, 'system': 2, 'trees': 3, 'eps': 4, 'computer': 5, 'survey': 6, 'user': 7, 'human': 8, 'time': 9, 'interface': 10, 'response': 11}
2014-05-25 02:58:50,486 : INFO : collecting document frequencies
2014-05-25 02:58:50,486 : INFO : adding document #0 to Dictionary(0 unique tokens: [])
2014-05-25 02:58:50,486 : INFO : built Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...) from 1 documents (total 7 corpus positions)
2014-05-25 02:58:50,486 : INFO : PROGRESS: processing document #0
2014-05-25 02:58:50,486 : INFO : adding document #0 to Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...)
2014-05-25 02:58:50,486 : INFO : built Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...) from 2 documents (total 14 corpus positions)
2014-05-25 02:58:50,486 : INFO : adding document #0 to Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...)
2014-05-25 02:58:50,487 : INFO : built Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...) from 3 documents (total 19 corpus positions)
2014-05-25 02:58:50,487 : INFO : adding document #0 to Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...)
2014-05-25 02:58:50,487 : INFO : built Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...) from 4 documents (total 25 corpus positions)
2014-05-25 02:58:50,487 : INFO : adding document #0 to Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...)
2014-05-25 02:58:50,487 : INFO : built Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...) from 5 documents (total 32 corpus positions)
2014-05-25 02:58:50,487 : INFO : adding document #0 to Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...)
2014-05-25 02:58:50,487 : INFO : built Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 6 documents (total 37 corpus positions)
2014-05-25 02:58:50,487 : INFO : adding document #0 to Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,487 : INFO : built Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 7 documents (total 41 corpus positions)
2014-05-25 02:58:50,488 : INFO : adding document #0 to Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,488 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 8 documents (total 49 corpus positions)
2014-05-25 02:58:50,488 : INFO : adding document #0 to Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...)
2014-05-25 02:58:50,488 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 9 documents (total 52 corpus positions)
2014-05-25 02:58:50,488 : INFO : calculating IDF weights for 9 documents and 34 features (51 matrix non-zeros)
2014-05-25 02:58:50,488 : INFO : ############### corpus_tfidf ###############
2014-05-25 02:58:50,488 : INFO : adding document #0 to Dictionary(0 unique tokens: [])
2014-05-25 02:58:50,488 : INFO : built Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...) from 1 documents (total 7 corpus positions)
2014-05-25 02:58:50,489 : INFO : ############### lda ###############
2014-05-25 02:58:50,489 : INFO : using symmetric alpha at 0.5
2014-05-25 02:58:50,489 : INFO : using serial LDA version on this node
2014-05-25 02:58:50,489 : WARNING : input corpus stream has no len(); counting documents
2014-05-25 02:58:50,489 : INFO : adding document #0 to Dictionary(0 unique tokens: [])
2014-05-25 02:58:50,489 : INFO : built Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...) from 1 documents (total 7 corpus positions)
2014-05-25 02:58:50,489 : INFO : adding document #0 to Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...)
2014-05-25 02:58:50,489 : INFO : built Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...) from 2 documents (total 14 corpus positions)
2014-05-25 02:58:50,489 : INFO : adding document #0 to Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...)
2014-05-25 02:58:50,490 : INFO : built Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...) from 3 documents (total 19 corpus positions)
2014-05-25 02:58:50,490 : INFO : adding document #0 to Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...)
2014-05-25 02:58:50,490 : INFO : built Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...) from 4 documents (total 25 corpus positions)
2014-05-25 02:58:50,490 : INFO : adding document #0 to Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...)
2014-05-25 02:58:50,490 : INFO : built Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...) from 5 documents (total 32 corpus positions)
2014-05-25 02:58:50,490 : INFO : adding document #0 to Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...)
2014-05-25 02:58:50,490 : INFO : built Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 6 documents (total 37 corpus positions)
2014-05-25 02:58:50,490 : INFO : adding document #0 to Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,490 : INFO : built Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 7 documents (total 41 corpus positions)
2014-05-25 02:58:50,491 : INFO : adding document #0 to Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,491 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 8 documents (total 49 corpus positions)
2014-05-25 02:58:50,491 : INFO : adding document #0 to Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...)
2014-05-25 02:58:50,491 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 9 documents (total 52 corpus positions)
2014-05-25 02:58:50,491 : INFO : running online LDA training, 2 topics, 1 passes over the supplied corpus of 9 documents, updating model once every 9 documents, evaluating perplexity every 9 documents, iterating 50 with a convergence threshold of 0
2014-05-25 02:58:50,491 : WARNING : too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
2014-05-25 02:58:50,491 : INFO : adding document #0 to Dictionary(0 unique tokens: [])
2014-05-25 02:58:50,491 : INFO : built Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...) from 1 documents (total 7 corpus positions)
2014-05-25 02:58:50,492 : INFO : adding document #0 to Dictionary(7 unique tokens: ['abc', 'lab', 'machine', 'applications', 'computer']...)
2014-05-25 02:58:50,492 : INFO : built Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...) from 2 documents (total 14 corpus positions)
2014-05-25 02:58:50,492 : INFO : adding document #0 to Dictionary(13 unique tokens: ['abc', 'system', 'lab', 'machine', 'applications']...)
2014-05-25 02:58:50,492 : INFO : built Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...) from 3 documents (total 19 corpus positions)
2014-05-25 02:58:50,492 : INFO : adding document #0 to Dictionary(15 unique tokens: ['abc', 'management', 'system', 'lab', 'eps']...)
2014-05-25 02:58:50,492 : INFO : built Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...) from 4 documents (total 25 corpus positions)
2014-05-25 02:58:50,492 : INFO : adding document #0 to Dictionary(17 unique tokens: ['abc', 'testing', 'management', 'system', 'lab']...)
2014-05-25 02:58:50,492 : INFO : built Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...) from 5 documents (total 32 corpus positions)
2014-05-25 02:58:50,493 : INFO : adding document #0 to Dictionary(21 unique tokens: ['measurement', 'perceived', 'abc', 'testing', 'management']...)
2014-05-25 02:58:50,493 : INFO : built Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 6 documents (total 37 corpus positions)
2014-05-25 02:58:50,493 : INFO : adding document #0 to Dictionary(26 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,493 : INFO : built Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...) from 7 documents (total 41 corpus positions)
2014-05-25 02:58:50,493 : INFO : adding document #0 to Dictionary(29 unique tokens: ['generation', 'testing', 'engineering', 'computer', 'relation']...)
2014-05-25 02:58:50,493 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 8 documents (total 49 corpus positions)
2014-05-25 02:58:50,493 : INFO : adding document #0 to Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...)
2014-05-25 02:58:50,493 : INFO : built Dictionary(35 unique tokens: ['minors', 'generation', 'testing', 'iv', 'engineering']...) from 9 documents (total 52 corpus positions)

1 个回答

6

这个问题是因为使用的语料库字典之间的单词和编号的对应关系不一致造成的。如果你在不合适的时候修剪了字典并调用了dictionary.compactify(),就可能会出现这种情况。

我们来看一个简单的例子,先创建一个字典:

from gensim.corpora.dictionary import Dictionary
documents = [
    ['here', 'is', 'one', 'document'],
    ['here', 'is', 'another', 'document'],
]
dictionary = Dictionary()
dictionary.add_documents(documents)

这个字典现在有一些单词的条目,并把它们映射到整数编号上。这样做的好处是可以把文档转换成(编号, 计数)的形式(在把它们传入模型之前,我们需要这样做):

vectorized_corpus = [dictionary.doc2bow(doc) for doc in corpus]

有时候你可能想要修改你的字典。例如,你可能想要去掉一些非常少见或非常常见的单词:

dictionary.filter_extremes(no_below=2, no_above=0.5, keep_n=100000)
dictionary.compactify()

去掉单词会在字典中留下空缺,但调用dictionary.compactify()可以重新分配编号来填补这些空缺。不过,这样一来,我们之前的vectorized_corpus就不再使用和dictionary相同的编号了,如果把它们传入模型,就会出现IndexError的错误。

解决办法:在修改字典并调用dictionary.compactify()之后,再使用字典来生成你的向量表示!

撰写回答