条件numpy.cumsum?

9 投票
4 回答
3209 浏览
提问于 2025-04-18 06:34

我刚接触python和numpy,所以如果我用错了术语请多包涵。

我把一个栅格数据转换成了一个二维的numpy数组,希望能快速高效地对它进行计算。

  • 我需要对这个numpy数组进行累加,也就是说,对于每一个值,我要计算出所有小于或等于这个值的数的总和,然后把这个总和写入一个新的数组。我需要这样遍历整个数组。

  • 我还需要把输出的结果缩放到1到100之间,不过这看起来
    比较简单。

通过一个例子来解释一下:

array([[ 4,  1  ,  3   ,  2] dtype=float32)

我希望输出的值(手动计算第一行)是:

array([[ 10,  1  ,  6   ,  3], etc.

有没有人知道怎么做到这一点?

提前谢谢大家!


对于感兴趣的人,这里是接近完成的脚本:

#Generate Cumulative Thresholds
#5/15/14

import os
import sys
import arcpy
import numpy as np

#Enable overwriting output data
arcpy.env.overwriteOutput=True

#Set working directory
os.chdir("E:/NSF Project/Salamander_Data/Continuous_Rasters/Canadian_GCM/2020/A2A/")

#Set geoprocessing variables
inRaster = "zero_eurycea_cirrigera_CA2A2020.tif"
des = arcpy.Describe(inRaster)
sr = des.SpatialReference
ext = des.Extent
ll = arcpy.Point(ext.XMin,ext.YMin)

#Convert GeoTIFF to numpy array
a = arcpy.RasterToNumPyArray(inRaster)

#Flatten for calculations
a.flatten()

#Find unique values, and record their indices to a separate object
a_unq, a_inv = np.unique(a, return_inverse=True)

#Count occurences of array indices
a_cnt = np.bincount(a_inv)

#Cumulatively sum the unique values multiplied by the number of
#occurences, arrange sums as initial array
b = np.cumsum(a_unq * a_cnt)[a_inv]

#Divide all values by 10 (reverses earlier multiplication done to
#facilitate accurate translation of ASCII scientific notation
#values < 1 to array)
b /= 10

#Rescale values between 1 and 100
maxval = np.amax(b)
b /= maxval
b *= 100

#Restore flattened array to shape of initial array
c = b.reshape(a.shape)

#Convert the array back to raster format
outRaster = arcpy.NumPyArrayToRaster(c,ll,des.meanCellWidth,des.meanCellHeight)

#Set output projection to match input
arcpy.DefineProjection_management(outRaster, sr)

#Save the raster as a TIFF
outRaster.save("C:/Users/mkcarte2/Desktop/TestData/outRaster.tif")

sys.exit()

4 个回答

1

编辑:

这个方法看起来不太好,但我觉得它终于可以用了:

import numpy as np

def cond_cum_sum(my_array):
    my_list = []
    prev = -np.inf
    prev_sum = 0
    for ele in my_array:
        if prev != ele:
            prev_sum += ele
        my_list.append(prev_sum)
        prev = ele
    return np.array(my_list)

a = np.array([[4,2,2,3],
              [9,0,5,2]], dtype=np.float32)

flat_a = a.flatten()
flat_a.sort() 

temp = np.argsort(a.ravel())   

cum_sums = cond_cum_sum(flat_a)

result_1 = np.zeros(len(flat_a))
result_1[temp] = cum_sums

result = result_1.reshape(a.shape)

结果:

>>> result
array([[  9.,   2.,   2.,   5.],
       [ 23.,   0.,  14.,   2.]])
1

这样做怎么样:

a=np.array([ 4,  1  ,  3   ,  2])

np.array([np.sum(a[a<=x])for x in a])

结果是

array([10,  1,  6,  3])

对于一个二维数组(假设你想要整个数组的总和,而不仅仅是某一行):

a=np.array([[ 4,  1  ,  3   ,  2],[ 5,  1  ,  3   ,  2]])

np.array([[np.sum(a[a<=x])for x in a[y,:]]for y in range(a.shape[0])])

结果是

array([[16,  2, 12,  6],
       [21,  2, 12,  6]])
1

用更少的numpy和更多的python:

a = np.array([[4,2,2,3],
              [9,0,5,2]], dtype=np.float32)

np.array([[sum(x for x in arr if x <= subarr) for subarr in arr] for arr in a])
# array([[ 11.,   4.,   4.,   7.],
#        [ 16.,   0.,   7.,   2.]])

如果求和的时候只考虑每个项目一次,不管它出现了多少次,那么,

np.array([[sum(set(x for x in arr if x <= subarr)) for subarr in arr] for arr in a]) 
# array([[  9.,   2.,   2.,   5.],
#        [ 16.,   0.,   7.,   2.]])
11

根据你想处理重复项的方式,这段代码可能会有效:

In [40]: a
Out[40]: array([4, 4, 2, 1, 0, 3, 3, 1, 0, 2])

In [41]: a_unq, a_inv = np.unique(a, return_inverse=True)

In [42]: a_cnt = np.bincount(a_inv)

In [44]: np.cumsum(a_unq * a_cnt)[a_inv]
Out[44]: array([20, 20,  6,  2,  0, 12, 12,  2,  0,  6], dtype=int64)

这里的 a 是你已经展开的数组,之后你需要把它重新调整回原来的形状。


当然,一旦 numpy 1.9 发布,你可以把上面第41行和第42行的代码合并成一行,这样会更快:

a_unq, a_inv, a_cnt = np.unique(a, return_inverse=True, return_counts=True)

撰写回答