条件numpy.cumsum?
我刚接触python和numpy,所以如果我用错了术语请多包涵。
我把一个栅格数据转换成了一个二维的numpy数组,希望能快速高效地对它进行计算。
我需要对这个numpy数组进行累加,也就是说,对于每一个值,我要计算出所有小于或等于这个值的数的总和,然后把这个总和写入一个新的数组。我需要这样遍历整个数组。
我还需要把输出的结果缩放到1到100之间,不过这看起来
比较简单。
通过一个例子来解释一下:
array([[ 4, 1 , 3 , 2] dtype=float32)
我希望输出的值(手动计算第一行)是:
array([[ 10, 1 , 6 , 3], etc.
有没有人知道怎么做到这一点?
提前谢谢大家!
对于感兴趣的人,这里是接近完成的脚本:
#Generate Cumulative Thresholds
#5/15/14
import os
import sys
import arcpy
import numpy as np
#Enable overwriting output data
arcpy.env.overwriteOutput=True
#Set working directory
os.chdir("E:/NSF Project/Salamander_Data/Continuous_Rasters/Canadian_GCM/2020/A2A/")
#Set geoprocessing variables
inRaster = "zero_eurycea_cirrigera_CA2A2020.tif"
des = arcpy.Describe(inRaster)
sr = des.SpatialReference
ext = des.Extent
ll = arcpy.Point(ext.XMin,ext.YMin)
#Convert GeoTIFF to numpy array
a = arcpy.RasterToNumPyArray(inRaster)
#Flatten for calculations
a.flatten()
#Find unique values, and record their indices to a separate object
a_unq, a_inv = np.unique(a, return_inverse=True)
#Count occurences of array indices
a_cnt = np.bincount(a_inv)
#Cumulatively sum the unique values multiplied by the number of
#occurences, arrange sums as initial array
b = np.cumsum(a_unq * a_cnt)[a_inv]
#Divide all values by 10 (reverses earlier multiplication done to
#facilitate accurate translation of ASCII scientific notation
#values < 1 to array)
b /= 10
#Rescale values between 1 and 100
maxval = np.amax(b)
b /= maxval
b *= 100
#Restore flattened array to shape of initial array
c = b.reshape(a.shape)
#Convert the array back to raster format
outRaster = arcpy.NumPyArrayToRaster(c,ll,des.meanCellWidth,des.meanCellHeight)
#Set output projection to match input
arcpy.DefineProjection_management(outRaster, sr)
#Save the raster as a TIFF
outRaster.save("C:/Users/mkcarte2/Desktop/TestData/outRaster.tif")
sys.exit()
4 个回答
1
编辑:
这个方法看起来不太好,但我觉得它终于可以用了:
import numpy as np
def cond_cum_sum(my_array):
my_list = []
prev = -np.inf
prev_sum = 0
for ele in my_array:
if prev != ele:
prev_sum += ele
my_list.append(prev_sum)
prev = ele
return np.array(my_list)
a = np.array([[4,2,2,3],
[9,0,5,2]], dtype=np.float32)
flat_a = a.flatten()
flat_a.sort()
temp = np.argsort(a.ravel())
cum_sums = cond_cum_sum(flat_a)
result_1 = np.zeros(len(flat_a))
result_1[temp] = cum_sums
result = result_1.reshape(a.shape)
结果:
>>> result
array([[ 9., 2., 2., 5.],
[ 23., 0., 14., 2.]])
1
这样做怎么样:
a=np.array([ 4, 1 , 3 , 2])
np.array([np.sum(a[a<=x])for x in a])
结果是
array([10, 1, 6, 3])
对于一个二维数组(假设你想要整个数组的总和,而不仅仅是某一行):
a=np.array([[ 4, 1 , 3 , 2],[ 5, 1 , 3 , 2]])
np.array([[np.sum(a[a<=x])for x in a[y,:]]for y in range(a.shape[0])])
结果是
array([[16, 2, 12, 6],
[21, 2, 12, 6]])
1
用更少的numpy和更多的python:
a = np.array([[4,2,2,3],
[9,0,5,2]], dtype=np.float32)
np.array([[sum(x for x in arr if x <= subarr) for subarr in arr] for arr in a])
# array([[ 11., 4., 4., 7.],
# [ 16., 0., 7., 2.]])
如果求和的时候只考虑每个项目一次,不管它出现了多少次,那么,
np.array([[sum(set(x for x in arr if x <= subarr)) for subarr in arr] for arr in a])
# array([[ 9., 2., 2., 5.],
# [ 16., 0., 7., 2.]])
11
根据你想处理重复项的方式,这段代码可能会有效:
In [40]: a
Out[40]: array([4, 4, 2, 1, 0, 3, 3, 1, 0, 2])
In [41]: a_unq, a_inv = np.unique(a, return_inverse=True)
In [42]: a_cnt = np.bincount(a_inv)
In [44]: np.cumsum(a_unq * a_cnt)[a_inv]
Out[44]: array([20, 20, 6, 2, 0, 12, 12, 2, 0, 6], dtype=int64)
这里的 a
是你已经展开的数组,之后你需要把它重新调整回原来的形状。
当然,一旦 numpy 1.9 发布,你可以把上面第41行和第42行的代码合并成一行,这样会更快:
a_unq, a_inv, a_cnt = np.unique(a, return_inverse=True, return_counts=True)