用Python生成Smith-Waterman算法矩阵
我正在使用Python来生成一个动态编程矩阵,使用的是Smith-Waterman算法。
这是我目前的进展:
def score(base1,base2):
base1=base1.upper()
base2=base2.upper()
if base1 not in 'ACTG' or base2 not in 'ACTG':
print 'Not DNA base!'
sys.exit()
elif base1==base2:
return 3
elif base1+base2=='AG' or base1+base2=='GA':
return -1
elif base1+base2=='CT' or base1+base2=='TC':
return -1
else:
return -2
import sys
seq1 = sys.argv[1]
seq2 = sys.argv[2]
mRows = len(seq1)
nCols = len(seq2)
gap = int(sys.argv[3])
matrix = []
# generate empty matrix
for x in range(mRows + 1):
matrix.append([])
for y in range(nCols + 1):
matrix[x].append(0)
for i in range(1, mRows + 1):
for j in range(1, nCols + 1):
dscore = matrix[i-1][j-1] + score(seq1[i-1], seq2[j-1])
vscore = matrix[i-1][j] + gap
hscore = matrix[i][j-1] + gap
matrix[i][j]=max(0, vscore, hscore, dscore)
输入是: sw.py ATGCAT ACCT -1
我得到了这个矩阵输出:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 3
0 0 0 0 2
0 0 0 0 1
0 0 0 0 0
0 0 0 0 3
经过一些排查,我发现嵌套的for循环中,只有使用j的最后一个值(对于这个特定的输入,值是4)的分数被存储在矩阵里,也就是说,只存储了最后一列。
我想知道为什么会这样发生,我该如何解决这个问题?为什么for循环会跳回去,而不是继续到变量分数那里?
这是我做的一些排查:
for i in range(1, mRows + 1):
for j in range(1, nCols + 1):
print 'this is i', i
print 'this is j', j
print 'seq1', seq1[i-1], 'seq2', seq2[j-1]
dscore = matrix[i-1][j-1] + score(seq1[i-1], seq2[j-1])
vscore = matrix[i-1][j] + gap
hscore = matrix[i][j-1] + gap
matrix[i][j]=max(0, vscore, hscore, dscore)
print 'Vscore = ', vscore
print 'Hscore = ', hscore
print 'Dscore = ', dscore
print '\n'
结果是:
this is i 1
this is j 1
seq1 A seq2 A
this is i 1
this is j 2
seq1 A seq2 C
this is i 1
this is j 3
seq1 A seq2 C
this is i 1
this is j 4
seq1 A seq2 T
Vscore = -1
Hscore = -1
Dscore = -2
this is i 2
this is j 1
seq1 T seq2 A
this is i 2
this is j 2
seq1 T seq2 C
this is i 2
this is j 3
seq1 T seq2 C
this is i 2
this is j 4
seq1 T seq2 T
Vscore = -1
Hscore = -1
Dscore = 3
this is i 3
this is j 1
seq1 G seq2 A
this is i 3
this is j 2
seq1 G seq2 C
this is i 3
this is j 3
seq1 G seq2 C
this is i 3
this is j 4
seq1 G seq2 T
Vscore = 2
Hscore = -1
Dscore = -2
this is i 4
this is j 1
seq1 C seq2 A
this is i 4
this is j 2
seq1 C seq2 C
this is i 4
this is j 3
seq1 C seq2 C
this is i 4
this is j 4
seq1 C seq2 T
Vscore = 1
Hscore = -1
Dscore = -1
this is i 5
this is j 1
seq1 A seq2 A
this is i 5
this is j 2
seq1 A seq2 C
this is i 5
this is j 3
seq1 A seq2 C
this is i 5
this is j 4
seq1 A seq2 T
Vscore = 0
Hscore = -1
Dscore = -2
this is i 6
this is j 1
seq1 T seq2 A
this is i 6
this is j 2
seq1 T seq2 C
this is i 6
this is j 3
seq1 T seq2 C
this is i 6
this is j 4
seq1 T seq2 T
Vscore = -1
Hscore = -1
Dscore = 3
谢谢!
1 个回答
1
我写了一个用于史密斯-沃特曼算法的类,你可能会觉得这个很有用。我建议在这个任务中使用numpy数组,因为对于越来越大的序列来说,numpy数组通常比列表更高效。
class LocalAligner(object):
#Constructor
def __init__(self, match=None, mismatch=None, gap=None, fileP=None, fileQ=None):
#Default args
#StringQ = GCTGGAAGGCAT
#StringP = GCAGAGCACG
#Match Score = +5, Mismatch Score = -4, Gap Penalty = -4
if match is None and mismatch is None and gap is None and fileP is None and fileQ is None:
#string1
self.q = "GCTGGAAGGCAT"
self.stringQName = "Sequence Q"
#string2
self.p = "GCAGAGCACG"
self.stringPName = "Sequence P"
#Scoring parameter
self.gapPen = -4
self.mismatchPen = -4
self.matchScore = 5
#User has given sequences and scoring arguments to the object
elif match is not None and mismatch is not None and gap is not None and fileP is not None and fileQ is not None:
#Default string name if one is not present in the file
self.stringQName = "String Q"
self.q = self.parseFile(fileQ, 1)
#Default string name if one is not present in the file
self.stringQName = "String P"
self.p = self.parseFile(fileP, 2)
#Scoring parameters given at the command line
self.gapPen = int(gap)
self.mismatchPen = int(mismatch)
self.matchScore = int(match)
#Final sequence alignments
self.finalQ = ""
self.finalP = ""
#Create a table and initialize to zero
#We will use numpy arrays as they are generally more efficient than lists for large amounts of data (ie sequences)
self.MatrixA = np.empty(shape=[len(self.p)+1,len(self.q)+1])
#Create b table
self.MatrixB = np.empty(shape=[len(self.p)+1,len(self.q)+1])
#Store max score and location
self.maxScore = 0
self.maxI = None
self.maxJ =None
#Populates the A and B tables
#A table holds the scores and the B table holds the direction of the optimal solution for each sub problem
def calcTables(self):
#insert initial blank string 1
try:
self.q = '-' + self.q
except IOError:
print("Error with sequence 1")
#insert initial blank string 2
try:
self.p = '-' + self.p
except IOError:
print("Error with sequence 2")
#Initialize row and column 0 for A and B tables
self.MatrixA[:,0] = 0
self.MatrixA[0,:] = 0
self.MatrixB[:,0] = 0
self.MatrixB[0,:] = 0
for i in range(1,len(self.p)):
for j in range(1, len(self.q)):
#Look for match
if self.p[i] == self.q[j]:
#Match found
self.MatrixA[i][j] = self.MatrixA[i-1][j-1] + self.matchScore
#3 == "diagonal" for traversing solution
self.MatrixB[i][j] = 3
#Check for max score
if self.MatrixA[i][j] > self.maxScore:
self.maxScore = self.MatrixA[i][j]
self.maxI = i
self.maxJ = j
#Match not found
else:
self.MatrixA[i][j] = self.findMaxScore(i,j)
#Finds the maximum score either in the north or west neighbor in the A table
#Due to the ordering, gaps are checked first
def findMaxScore(self, i, j):
#North score
qDelet = self.MatrixA[i-1][j] + self.gapPen
#West score
pDelet = self.MatrixA[i][j-1] + self.gapPen
#Diagonal Score
mismatch = self.MatrixA[i-1][j-1] + self.mismatchPen
#Determine the max score
maxScore = max(qDelet, pDelet, mismatch)
#Set B table
if qDelet == maxScore:
self.MatrixB[i][j] = 2 #2 == "up" for traversing solution
elif pDelet == maxScore:
self.MatrixB[i][j] = 1 #1 == "left" for traversing solution
elif mismatch == maxScore:
self.MatrixB[i][j] = 3 #3 == "diagonal" for traversing solution
return maxScore
#Calculate the alignment with the highest score by tracing back the highest scoring local solution
#Integers:
#3 -> "DIAGONAL" -> match
#2 -> "UP" -> gap in string q
#1 -> "LEFT" -> gap in string p
#were used in the B table
def calcAlignemnt(self, i=None, j=None):
#Default arguments to the maximum score in the A table
if i is None and j is None:
i = self.maxI
j = self.maxJ
#Base case, end of the local alignment
if i == 0 or j == 0:
return
#Optimal solution "DIAGONAL"
if self.MatrixB[i][j] == 3:
self.calcAlignemnt(i-1 , j-1)
self.finalQ += self.q[j]
self.finalP += self.p[i]
else:
#Optimal solution "UP"
if self.MatrixB[i][j] == 2:
self.calcAlignemnt(i-1, j)
self.finalQ += '-'
self.finalP += self.p[i]
else:
#Optimal solution "LEFT"
self.calcAlignemnt(i, j-1)
self.finalP += '-'
self.finalQ += self.p[j]
#Parse the input sequence file for string
#Assumes fasta format
def parseFile(self, filePath, stringNumber):
#Empty sequence
seq = ""
#Parse the file
with open(filePath) as f:
for line in f:
#Remove new line characters
line = line.replace('\r',"") #Windows
line = line.replace('\n', "")
#Header encountered
if line.startswith(">"):
if stringNumber == 2:
self.stringQName = line.replace('>',"")
continue
elif stringNumber == 1:
self.stringPName = line.replace('>',"")
continue
else:
continue
#Append line
seq += line
f.close()
return seq