OpenCV相机标定在模拟数据上失败
如果我:
- 定义一个内在相机矩阵
A
和姿态[rvec, ...], [tvec, ...]
, - 把它们当作参数放进
cv2.projectPoints
,用来生成相机看到一组圆形网格时的图像, - 在生成的图像中检测特征(用
cv2.findCirclesGrid
), - 然后用
cv2.calibrateCamera
对这些特征检测结果进行处理,以恢复相机参数,
我难道不应该恢复出原来的内在和外在参数吗?
这个问题底部的完整代码实现了这个过程,但并没有恢复出原来的相机参数:
Kept 4 full captures out of 4 images
calibration error 133.796093439
Simulation matrix:
[[ 5.00000000e+03 0.00000000e+00 3.20000000e+02]
[ 0.00000000e+00 5.00000000e+03 2.40000000e+02]
[ 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
Estimated matrix:
[[ 1.0331118 0. 317.58445168]
[ 0. 387.49075886 317.98450481]
[ 0. 0. 1. ]]
也就是说,平均误差非常大,估算出来的相机矩阵看起来和最开始用来生成测试图像的模拟相机矩阵完全不一样。
我本以为这种闭环的模拟应该能得到一个非常准确的内在相机矩阵估计。那我到底做错了什么,导致这个验证 cameraCalibration
的方法似乎不奏效呢?
根据AldurDisciple的评论进行的修改
1) 在下面的代码中添加了一个新函数 direct_generation_of_points
,这个函数跳过了图像生成的步骤,直接使用 cv2.projectPoints
来计算传入 cv2.calibrateCamera
的圆形位置。这个方法是正确的。
但这有点让人困惑:从我模拟的图像中得到的估算圆形位置通常和准确位置相差不到十分之一像素,主要的区别在于这些点的顺序不同:
# compare the y-component's
In [245]: S.dots[0][:,0,1]
Out[245]:
array([ 146.33618164, 146.30953979, 146.36413574, 146.26707458,
146.17976379, 146.30110168, 146.17236328, 146.35955811,
146.33454895, 146.36776733, 146.2612915 , 146.21359253,
146.23895264, 146.27839661, 146.27764893, 177.51347351,
177.57495117, 177.53858948, 177.48587036, 177.63012695,
177.48597717, 177.51727295, 177.5202179 , 177.52545166,
177.57287598, 177.51008606, 177.51296997, 177.53715515,
177.53053284, 177.58164978, 208.69573975, 208.7252655 ,
208.69616699, 208.73510742, 208.63375854, 208.66760254,
208.71517944, 208.74360657, 208.62438965, 208.59814453,
208.67456055, 208.72662354, 208.70921326, 208.63339233,
208.70820618, 239.8401947 , 240.06373596, 239.87176514,
240.04118347, 239.97781372, 239.97572327, 240.04475403,
239.95411682, 239.80995178, 239.94726562, 240.01327515,
239.82675171, 239.99989319, 239.90107727, 240.07745361,
271.31692505, 271.28417969, 271.28216553, 271.33111572,
271.33279419, 271.33584595, 271.30758667, 271.21173096,
271.28588867, 271.3387146 , 271.33770752, 271.2104187 ,
271.38504028, 271.25054932, 271.29376221, 302.52420044,
302.47903442, 302.41482544, 302.39868164, 302.47793579,
302.49789429, 302.45016479, 302.48071289, 302.50463867,
302.51422119, 302.46307373, 302.42077637, 302.60791016,
302.48162842, 302.46142578, 333.70709229, 333.75698853,
333.64157104, 333.64926147, 333.6647644 , 333.69546509,
333.73342896, 333.76846313, 333.57540894, 333.76605225,
333.74307251, 333.60968018, 333.7739563 , 333.70132446,
333.62057495], dtype=float32)
In [246]: S.exact_dots[0][:,0,1]
Out[246]:
array([ 146.25, 177.5 , 208.75, 240. , 271.25, 302.5 , 333.75,
146.25, 177.5 , 208.75, 240. , 271.25, 302.5 , 333.75,
<< snipped 10 identical rows >>
146.25, 177.5 , 208.75, 240. , 271.25, 302.5 , 333.75,
146.25, 177.5 , 208.75, 240. , 271.25, 302.5 , 333.75,
146.25, 177.5 , 208.75, 240. , 271.25, 302.5 , 333.75], dtype=float32)
这是我想要实现的工作版本:
import scipy
import cv2
import itertools
def direct_generation_of_points():
''' Skip the part where we actually generate the image,
just use cv2.projectPoints to generate the exact locations
of the grid centers.
** This seems to work correctly **
'''
S=Setup()
t=tvec(0.0,0.0,1.6) # keep the camera 1.6 meters away from target, looking at the origin
rvecs=[ rvec(0.0,0.0,0.0), rvec(0.0, scipy.pi/6,0.0), rvec(scipy.pi/8,0.0,0.0), rvec(0.0,0.0,0.5) ]
S.poses=[ (r,t) for r in rvecs ]
S.images='No images: just directly generate the extracted circle locations'
S.dots=S.make_locations_direct()
calib_flags=cv2.CALIB_ZERO_TANGENT_DIST|cv2.CALIB_SAME_FOCAL_LENGTH
calib_flags=calib_flags|cv2.CALIB_FIX_K3|cv2.CALIB_FIX_K4
calib_flags=calib_flags|cv2.CALIB_FIX_K5|cv2.CALIB_FIX_K6
S.calib_results=cv2.calibrateCamera( [S.grid,]*len(S.dots), S.dots, S.img_size, cameraMatrix=S.A, flags=calib_flags)
print "calibration error ", S.calib_results[0]
print "Simulation matrix: \n", S.A
print "Estimated matrix: \n", S.calib_results[1]
return S
def basic_test():
''' Uses a camera setup to
(1) generate an image of a grid of circles
(2) detects those circles
(3) generate an estimated camera model from the circle detections
** This does not work correctly **
'''
S=Setup()
t=tvec(0.0,0.0,1.6) # keep the camera 1.6 meters away from target, looking at the origin
rvecs=[ rvec(0.0,0.0,0.0), rvec(0.0, scipy.pi/6,0.0), rvec(scipy.pi/8,0.0,0.0), rvec(0.0,0.0,0.5) ]
S.poses=[ (r,t) for r in rvecs ]
S.images=S.make_images()
S.dots=extract_dots( S.images, S.grid_size[::-1] )
S.exact_dots=S.make_locations_direct()
calib_flags=cv2.CALIB_ZERO_TANGENT_DIST|cv2.CALIB_SAME_FOCAL_LENGTH
calib_flags=calib_flags|cv2.CALIB_FIX_K3|cv2.CALIB_FIX_K4|cv2.CALIB_FIX_K5
calib_flags=calib_flags|cv2.CALIB_FIX_K6
S.calib_results=cv2.calibrateCamera( [S.grid,]*len(S.dots), S.dots, S.img_size, cameraMatrix=S.A, flags=calib_flags)
print "calibration error ", S.calib_results[0]
print "Simulation matrix: \n", S.A
print "Estimated matrix: \n", S.calib_results[1]
return S
class Setup(object):
''' Class to simulate a camera, produces images '''
def __init__(self):
self.img_size=(480,640)
self.A=scipy.array( [ [5.0e3, 0.0, self.img_size[1]/2],
[ 0.0, 5.0e3, self.img_size[0]/2],
[ 0.0, 0.0, 1.0 ] ],
dtype=scipy.float32 )
# Nx, Ny, spacing, dot-size
self.grid_spec=( 15, 7, 0.01, 0.001 )
self.grid=square_grid_xy( self.grid_spec[0], self.grid_spec[1], self.grid_spec[2])
# a pose is a pair: rvec, tvec
self.poses=[ ( rvec(0.0, scipy.pi/6, 0.0), tvec( 0.0,0.0,1.6) ),
]
@property
def grid_size(self):
return self.grid_spec[:2]
def make_images(self):
return [make_dots_image(self.img_size, self.A, rvec, tvec, self.grid, self.grid_spec[-1] ) for (rvec,tvec) in self.poses]
def make_locations_direct(self):
return [cv2.projectPoints( self.grid, pose[0], pose[1], self.A, None)[0] for pose in self.poses]
def square_grid_xy( nx, ny, dx ):
''' Returns a square grid in the xy plane, useful
for defining test grids for camera calibration
'''
xvals=scipy.arange(nx)*dx
yvals=scipy.arange(ny)*dx
xvals=xvals-scipy.mean(xvals)
yvals=yvals-scipy.mean(yvals)
res=scipy.zeros( [3, nx*ny], dtype=scipy.float32 )
for (i,(x,y)) in enumerate( itertools.product(xvals, yvals)):
res[:,i]=scipy.array( [x,y,0.0] )
return res.transpose()
# single pixel dots were not detected?
#def make_single_pixel_dots( img_size, A, rvec, tvec, grid, dist_k=None):
# rgb=scipy.ones( img_size+(3,), dtype=scipy.uint8 )*0xff
# (dot_locs, jac)=cv2.projectPoints( grid, rvec, tvec, A, dist_k)
# for p in dot_locs:
# (c,r)=(int(p[0][0]+0.5), int(p[0][1]+0.5))
# if 0<=c<img_size[1] and 0<=r<img_size[0]:
# rgb[r,c,:]=0
# return rgb
def make_dots_image( img_size, A, rvec, tvec, grid, dotsize, dist_k=None):
''' Make the image of the dots, uses cv2.projectPoints to construct the image'''
# make white image
max_intensity=0xffffffff
intensity=scipy.ones( img_size, dtype=scipy.uint32)*max_intensity
# Monte-Carlo approach to draw the dots
for dot in grid:
deltas=2*dotsize*( scipy.rand(1024, 3 )-0.5) # no. of samples must be small relative to bit-depth of intensity array
deltas[:,2]=0
indicator=scipy.where( scipy.sum( deltas*deltas, 1)<dotsize*dotsize, 1, 0.0)
print "inside fraction: ", sum(indicator)/len(indicator)
(pts,jac)=cv2.projectPoints( dot+deltas, rvec, tvec, A, dist_k )
pts=( p for (ind,p) in zip(indicator, pts) if ind )
for p in pts:
(c,r)=( int(p[0][0]+0.5), int( p[0][1]+0.5 ) )
if r>=0 and c>=0 and c<img_size[1] and r<img_size[0]:
intensity[r,c]=intensity[r,c]-6
else:
print "col, row ", (c,r), " point rejected"
# rescale so that image goes from 0x0 to max intensity
min_intensity=min(intensity.flat)
# normalize the intensity
intensity=0xff*( (intensity-min_intensity)/float(max_intensity-min_intensity) )
pixel_img=scipy.ones( intensity.shape+(3,), dtype=scipy.uint8 )
return (pixel_img*intensity[:,:,scipy.newaxis]).astype(scipy.uint8 )
def extract_dots( img_list, grid_size ):
'''
@arg img_list: usually a list of images, can be a single image
'''
# convert single array, into a 1-element list
if type(img_list) is scipy.ndarray:
img_list=[img_list,]
def get_dots( img ):
res=cv2.findCirclesGridDefault( img, grid_size)
if not res[0]: # sometimes, reversing the grid size will make the detection successful
return cv2.findCirclesGridDefault( img, grid_size[::-1] )
return res
all_dots=[ get_dots( img) for img in img_list]
#all_dots=[cv2.findCirclesGrid( img, grid_size[::-1] ) for img in img_list ]
full_captures=[x[1] for x in all_dots if x[0] ]
print "Kept {0} full captures out of {1} images".format( len(full_captures), len(img_list) )
if len(full_captures)<len(img_list):
print "\t", [x[0] for x in all_dots]
return [scipy.squeeze(x) for x in full_captures]
# convenience functions
def vec3_32(x,y,z):
return scipy.array( [x,y,z], dtype=scipy.float32 )
rvec=vec3_32
tvec=vec3_32
if __name__=="__main__":
basic_test()
1 个回答
1
关键问题在于传递给cv2.calibrateCamera
第一个参数的网格点的排列方式。在这个问题中,点是按列优先的方式排列的,也就是说,需要改成按行优先的方式排列:
def square_grid_xy_fixed( nx, ny, dx ):
''' Returns a square grid in the xy plane, useful
for defining test grids for camera calibration
'''
xvals=scipy.arange(nx)*dx
yvals=scipy.arange(ny)*dx
xvals=xvals-scipy.mean(xvals)
yvals=yvals-scipy.mean(yvals)
res=scipy.zeros( [3, nx*ny], dtype=scipy.float32 )
# need to have "x" be the most rapidly varying index, i.e.
# it must be the final argument to itertools.product
for (i,(y,x)) in enumerate( itertools.product(yvals, xvals)):
res[:,i]=scipy.array( [x,y,0.0] )
return res.transpose()