设置Pandas多重索引的值
我刚接触Python和Pandas这两个东西。
我想先创建一个数据框(dataframe),然后再给里面填充数据。
我已经创建好了我的数据框:
from pandas import *
ageMin = 21
ageMax = 31
ageStep = 2
bins_sumins = [0, 10000, 20000]
bins_age = list(range(ageMin, ageMax, ageStep))
indeks_sex = ['M', 'F']
indeks_age = ['[{0}-{1})'.format(bins_age[i-1], bins_age[i]) for i in range(1, len(bins_age))]
indeks_sumins = ['[{0}-{1})'.format(bins_sumins[i-1], bins_sumins[i]) for i in range(1, len(bins_sumins))]
indeks = MultiIndex.from_product([indeks_age, indeks_sex, indeks_sumins], names=['Age', 'Sex', 'Sumins'])
cols = ['A', 'B', 'C', 'D']
df = DataFrame(data = 0, index = indeks, columns = cols)
到目前为止一切都很好。我可以给一整组数据赋值:
>>> df['A']['[21-23)']['M'] = 1
>>> df
A B C D
Age Sex Sumins
[21-23) M [0-10000) 1 0 0 0
[10000-20000) 1 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[23-25) M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[25-27) M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[27-29) M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
但是,单独给某一个位置赋值就不行了……
>>> df['B']['[21-23)']['M']['[10000-20000)'] = 2
>>> df
A B C D
Age Sex Sumins
[21-23) M [0-10000) 1 0 0 0
[10000-20000) 1 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[23-25) M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[25-27) M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[27-29) M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[16 rows x 4 columns]
这是怎么回事呢?我觉得我可能完全误解了多重索引(multiindexing)的用法。有人能帮我吗?
1 个回答
13
首先,看看关于链式索引的文档。
其次,阅读一下关于多重索引需要排序的内容。
这样你就能找到这个解决方案:
In [46]: df = df.sort_index()
In [47]: df.loc['[21-23)', 'M', '[10000-20000)'] = 2
In [48]: df
Out[48]:
A B C D
Age Sex Sumins
[21-23) F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
M [0-10000) 0 0 0 0
[10000-20000) 2 2 2 2
[23-25) F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[25-27) F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[27-29) F [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
M [0-10000) 0 0 0 0
[10000-20000) 0 0 0 0
[16 rows x 4 columns]
pandas .14
将会有一些额外的方式来切片多重索引。