时间字符串(小时:分钟:秒.毫秒)快速转换为浮点数
我用pandas来导入一个csv文件(大约有一百万行,5列),其中有一列是时间戳(逐行递增),格式是小时:分钟:秒.毫秒,比如:
11:52:55.162
还有一些其他的浮点数列。我需要把时间戳这一列转换成浮点数(比如以秒为单位)。到目前为止,我使用了
pandas.read_csv
来获取一个数据框df,然后把它转换成一个numpy数组
df=np.array(df)
以上的操作都很顺利,而且速度也很快。不过,接下来我用datetime.strptime(第0列是时间戳)
df[:,0]=[(datetime.strptime(str(d),'%H:%M:%S.%f')).total_seconds() for d in df[:,0]]
把时间戳转换成秒,结果发现这个过程非常慢。并不是说遍历所有行很慢,而是
datetime.strptime
这个步骤成了瓶颈。有没有更好的方法呢?
3 个回答
0
使用 sum()
和 enumerate()
-
>>> ts = '11:52:55.162'
>>> ts1 = map(float, ts.split(':'))
>>> ts1
[11.0, 52.0, 55.162]
>>> ts2 = [60**(2-i)*n for i, n in enumerate(ts1)]
>>> ts2
[39600.0, 3120.0, 55.162]
>>> ts3 = sum(ts2)
>>> ts3
42775.162
>>> seconds = sum(60**(2-i)*n for i, n in enumerate(map(float, ts.split(':'))))
>>> seconds
42775.162
>>>
3
这里,我们使用时间差(timedeltas)
创建一个示例序列
In [21]: s = pd.to_timedelta(np.arange(100000),unit='s')
In [22]: s
Out[22]:
0 00:00:00
1 00:00:01
2 00:00:02
3 00:00:03
4 00:00:04
5 00:00:05
6 00:00:06
7 00:00:07
8 00:00:08
9 00:00:09
10 00:00:10
11 00:00:11
12 00:00:12
13 00:00:13
14 00:00:14
...
99985 1 days, 03:46:25
99986 1 days, 03:46:26
99987 1 days, 03:46:27
99988 1 days, 03:46:28
99989 1 days, 03:46:29
99990 1 days, 03:46:30
99991 1 days, 03:46:31
99992 1 days, 03:46:32
99993 1 days, 03:46:33
99994 1 days, 03:46:34
99995 1 days, 03:46:35
99996 1 days, 03:46:36
99997 1 days, 03:46:37
99998 1 days, 03:46:38
99999 1 days, 03:46:39
Length: 100000, dtype: timedelta64[ns]
为了测试的目的,将其转换为字符串
In [23]: t = s.apply(pd.tslib.repr_timedelta64)
这些是字符串
In [24]: t.iloc[-1]
Out[24]: '1 days, 03:46:39'
用timedelta64除以这个值可以把它转换成秒
In [25]: pd.to_timedelta(t.iloc[-1])/np.timedelta64(1,'s')
Out[25]: 99999.0
目前这是通过正则表达式匹配,所以直接从字符串处理起来不是很快。
In [27]: %timeit pd.to_timedelta(t)/np.timedelta64(1,'s')
1 loops, best of 3: 1.84 s per loop
这是一个基于日期时间戳的解决方案
因为日期时间已经以int64的形式存储,所以这非常简单且快速
创建一个示例序列
In [7]: s = Series(date_range('20130101',periods=1000,freq='ms'))
In [8]: s
Out[8]:
0 2013-01-01 00:00:00
1 2013-01-01 00:00:00.001000
2 2013-01-01 00:00:00.002000
3 2013-01-01 00:00:00.003000
4 2013-01-01 00:00:00.004000
5 2013-01-01 00:00:00.005000
6 2013-01-01 00:00:00.006000
7 2013-01-01 00:00:00.007000
8 2013-01-01 00:00:00.008000
9 2013-01-01 00:00:00.009000
10 2013-01-01 00:00:00.010000
11 2013-01-01 00:00:00.011000
12 2013-01-01 00:00:00.012000
13 2013-01-01 00:00:00.013000
14 2013-01-01 00:00:00.014000
...
985 2013-01-01 00:00:00.985000
986 2013-01-01 00:00:00.986000
987 2013-01-01 00:00:00.987000
988 2013-01-01 00:00:00.988000
989 2013-01-01 00:00:00.989000
990 2013-01-01 00:00:00.990000
991 2013-01-01 00:00:00.991000
992 2013-01-01 00:00:00.992000
993 2013-01-01 00:00:00.993000
994 2013-01-01 00:00:00.994000
995 2013-01-01 00:00:00.995000
996 2013-01-01 00:00:00.996000
997 2013-01-01 00:00:00.997000
998 2013-01-01 00:00:00.998000
999 2013-01-01 00:00:00.999000
Length: 1000, dtype: datetime64[ns]
将其转换为自纪元以来的纳秒 / 除以这个值可以得到自纪元以来的毫秒(如果你想要秒,除以10的9次方)
In [9]: pd.DatetimeIndex(s).asi8/10**6
Out[9]:
array([1356998400000, 1356998400001, 1356998400002, 1356998400003,
1356998400004, 1356998400005, 1356998400006, 1356998400007,
1356998400008, 1356998400009, 1356998400010, 1356998400011,
...
1356998400992, 1356998400993, 1356998400994, 1356998400995,
1356998400996, 1356998400997, 1356998400998, 1356998400999])
非常快
In [12]: s = Series(date_range('20130101',periods=1000000,freq='ms'))
In [13]: %timeit pd.DatetimeIndex(s).asi8/10**6
100 loops, best of 3: 11 ms per loop
2
我猜这个 datetime
对象会占用很多资源,手动处理可能会更简单:
def to_seconds(s):
hr, min, sec = [float(x) for x in s.split(':')]
return hr*3600 + min*60 + sec