Python NLTK 使用WordNet对单词'further'进行词形还原
我正在用Python、NLTK和WordNetLemmatizer做一个词形还原器。这里有一段随机文本,输出的结果正是我期待的。
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
lem = WordNetLemmatizer()
lem.lemmatize('worse', pos=wordnet.ADJ) // here, we are specifying that 'worse' is an adjective
输出:'bad'
lem.lemmatize('worse', pos=wordnet.ADV) // here, we are specifying that 'worse' is an adverb
输出:'worse'
好吧,这里的一切都正常。对于其他形容词,比如'better'
(这是一个不规则形式)或'older'
,它们的表现也是一样的(注意,使用'elder'
进行同样的测试时,永远不会输出'old'
,不过我想WordNet并不是所有英语单词的完整列表)。
我的问题出现在尝试使用单词'furter'
时:
lem.lemmatize('further', pos=wordnet.ADJ) // as an adjective
输出:'further'
lem.lemmatize('further', pos=wordnet.ADV) // as an adverb
输出:'far'
这和'worse'
的表现完全相反!
有没有人能告诉我这是为什么?是WordNet的同义词数据有问题,还是我对英语语法的理解有误?
如果这个问题已经有人回答过,请见谅。我在谷歌和StackOverflow上搜索过,但当我指定关键词“further”时,找到的相关内容都很杂乱,因为这个词太常用了……
提前谢谢你们,
罗曼·G。
1 个回答
WordNetLemmatizer
使用 ._morphy
函数来获取一个单词的基本形式(也叫词根);这个函数会返回可能的基本形式中最短的一个。
def lemmatize(self, word, pos=NOUN):
lemmas = wordnet._morphy(word, pos)
return min(lemmas, key=len) if lemmas else word
而 ._morphy
函数会不断应用一些规则来得到一个词根;这些规则会逐步缩短单词的长度,并用 MORPHOLOGICAL_SUBSTITUTIONS
替换掉一些前后缀。接着,它会检查是否有其他更短的单词与缩短后的单词相同:
def _morphy(self, form, pos):
# from jordanbg:
# Given an original string x
# 1. Apply rules once to the input to get y1, y2, y3, etc.
# 2. Return all that are in the database
# 3. If there are no matches, keep applying rules until you either
# find a match or you can't go any further
exceptions = self._exception_map[pos]
substitutions = self.MORPHOLOGICAL_SUBSTITUTIONS[pos]
def apply_rules(forms):
return [form[:-len(old)] + new
for form in forms
for old, new in substitutions
if form.endswith(old)]
def filter_forms(forms):
result = []
seen = set()
for form in forms:
if form in self._lemma_pos_offset_map:
if pos in self._lemma_pos_offset_map[form]:
if form not in seen:
result.append(form)
seen.add(form)
return result
# 0. Check the exception lists
if form in exceptions:
return filter_forms([form] + exceptions[form])
# 1. Apply rules once to the input to get y1, y2, y3, etc.
forms = apply_rules([form])
# 2. Return all that are in the database (and check the original too)
results = filter_forms([form] + forms)
if results:
return results
# 3. If there are no matches, keep applying rules until we find a match
while forms:
forms = apply_rules(forms)
results = filter_forms(forms)
if results:
return results
# Return an empty list if we can't find anything
return []
不过,如果这个单词在一个例外列表中,它就会返回一个固定的值,这个值保存在 exceptions
中,具体可以查看 _load_exception_map
,链接在这里:http://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html:
def _load_exception_map(self):
# load the exception file data into memory
for pos, suffix in self._FILEMAP.items():
self._exception_map[pos] = {}
for line in self.open('%s.exc' % suffix):
terms = line.split()
self._exception_map[pos][terms[0]] = terms[1:]
self._exception_map[ADJ_SAT] = self._exception_map[ADJ]
回到你的例子,worse
变成 bad
和 further
变成 far
是无法通过这些规则实现的,因此它们必须来自例外列表。由于这是一个例外列表,里面肯定会有不一致的情况。
这个例外列表保存在 ~/nltk_data/corpora/wordnet/adv.exc
和 ~/nltk_data/corpora/wordnet/adj.exc
中。
来自 adv.exc
的内容:
best well
better well
deeper deeply
farther far
further far
harder hard
hardest hard
来自 adj.exc
的内容:
...
worldliest worldly
wormier wormy
wormiest wormy
worse bad
worst bad
worthier worthy
worthiest worthy
wrier wry
...