在直方图中绘制最佳拟合曲线
我今天花了一整天的时间,想用curve_fit和其他方法给一个直方图画个简单的最佳拟合曲线,但结果非常糟糕。快要崩溃了,我只好把我的代码贴出来,希望有人能给我指条明路,帮我画出这条曲线。我对编程完全是个新手,所以请忽略我代码中的任何问题。以下是我的代码:
# Velocity Verlet integrator
def Verlet(x, V, dt, A):
x_new = x + V*dt + (A(x,V,R)*(dt**2)/2)
V_new =((2)/2+dt)*(V + ((dt/2)*(((48/x_new**13)-(24/x_new**7)) + ((g*2)**(0.5))*R + ((48/x**13)-(24/x**7)) - g*V + ((g*2)**(0.5))*R)))
return (x_new, V_new)
# Start main program
# Import required libraries
import numpy as np
from numpy import array, zeros
import random
mu, sigma = 0, 1 # mean and variance
S = np.random.normal(mu, sigma, 1000) # Gaussian distribution
g=10 #gamma damping factor
# Define the acceleration function
def A(x,V,R):
Acc = (((48/x**13)-(24/x**7)) - g*V + ((g*2)**(0.5))*(R))
return Acc
# Set starting values for position and velocity
x = array([3])
V = array([0])
N = 100000 # number of steps
M = 10 # save position every M_th step
dt = 0.01 # interval
# Lists for storing the position and velocity
Xlist = zeros([1,N/M]) #define vector dimensions
Vlist = zeros([1,N/M])
# Put the initial values into the lists
Xlist[:,0] = x
Vlist[:,0] = V
# Run simulation
print "Total number of steps:", N
print "Saving position and velocity every %d steps." % (M)
print "Start."
for i in range(N/M):
# Run for M steps before saving values
for j in range(M):
# Update position and velocity based on the current ones
# and the acceleration function
R = random.choice(S) # selects a different random number from S each time
x, V = Verlet(x, V, dt, A) #calculates new pos and vel from Verlet algorithm
# Save values into lists
Xlist[:, i] = x
Vlist[:, i] = V
print ("Stop.")
#Define the range of steps for plot
L = []
k=0
while k < (N/M):
L.append(k)
k = k + 1
#convert lists into vectors
Xvec = (np.asarray(Xlist)).T #Transpose vectors for plotting purpose
Vvec = (np.asarray(Vlist)).T
KB=1.3806488*(10**(-23)) #Boltzmann constant
AvVel = (sum(Vvec)/len(Vvec)) #computes average velocity
print "The average velocity is: ", AvVel
Temp = ((AvVel**2)/(3*KB)) #Temperature calculated from equipartition theorem
print "The temperature of the system is: ", Temp,
#################
##### plots #####
#################
# Plot results
from matplotlib import pyplot as plt
#plots 1-d positional trjectory vs timestep
plt.figure(0)
plt.plot(Xvec,L)
# Draw x and y axis lines
plt.axhline(color="black")
plt.axvline(color="black")
plt.ylim(0, N/M)
plt.xlim(0,6) #set axis limits
plt.show()
#plots postion distribution histogram
plt.figure(1)
num_bins = 1000
# the histogram of the data
npos, binspos, patches = plt.hist(Xvec, num_bins, normed=1, facecolor='blue', edgecolor = "none", alpha=0.5)
PH = plt.hist(Xvec, num_bins, normed=1, facecolor='blue', edgecolor = "none", alpha=0.5)
plt.xlabel('Position')
plt.ylabel('Timestep')
plt.title(r'Position distribution histogram')
plt.show()
我得到的位置直方图看起来像一个漂亮的反向Lennard-Jones势能曲线。不过,我想在这个直方图上画一条曲线,以便得到这条最佳拟合曲线的函数形式。我看到的所有例子都是将曲线画到定义好的函数上,这显然很简单,但在直方图上画曲线似乎是个隐藏的秘密。任何帮助都非常感谢。谢谢。
顺便说一下,这是我完全凭猜测做的尝试:
from scipy.optimize import curve_fit
def func(x,a):
return (-a(1/((x^12)-(x^6))))
p0 = [1., 0., 1.]
coeff, var_matrix = curve_fit(func, binspos, npos, p0=p0)
# Get the fitted curve
hist_fit = func(binspos, *coeff)
plt.plot(binspos, hist_fit, label='Fitted data')
plt.show()
2 个回答
0
哦,真是太尴尬了!这只是一个简单的语法错误,问题出在这段代码上,应该用 ** 而不是 ^。真糟糕。不过,还是感谢大家的建议和帮助!
def func(x,a):
return (-a(1/((x^12)-(x^6))))
1
根据我的理解,你是想把直方图画成曲线,而不是用柱子来表示?你只需要用 hist
函数返回的数据 binspos, npos
,然后配合 plot
函数来实现。问题在于,数据点的数量比箱子的边缘数量少一个,所以你需要先计算出箱子的中心位置:
bin_centers = binspos[:-1] + 0.5 * np.diff(binspos)
然后就可以把直方图的数据画出来了:
plt.plot(bin_centers, npos)
如果你真的想在这里进行曲线拟合,你可能需要把 bin_centers
作为 x 轴的输入数据,希望下面这样的代码能奏效:
coeff, var_matrix = curve_fit(func, bin_centers, npos, p0=p0)