Scipy稀疏中eigs函数返回的不一致特征值
我在使用scipy.sparse.linalg模块里的eigs函数时,发现了一些不一致的结果。也就是说,运行同样的代码两次,得到的结果却不一样,np.allclose的输出是False。有人能解释一下这是为什么吗?
from scipy.sparse.linalg import eigs
from scipy.sparse import spdiags
import numpy as np
n1 = 100
x, dx = linspace(0, 2, n1, retstep=True)
e1 = ones(n1)
A = 1./(dx**2)*spdiags([e1, -2*e1, e1], [-1,0,1], n1, n1)
np.allclose(eigs(A, 90)[0], eigs(A, 90)[0])
在IPython中的例子可以在这里查看(抱歉,我不知道怎么发布IPython的输出)
编辑 1:
这并不是像@Kh40tiK所说的那样,排序特征值的问题。可以在这里查看。
编辑 2:
在尝试了不同版本的Scipy,并运行了@Kh40tiK发布的脚本,增加了scipy.show_config()的调用后,似乎是使用MKL编译的SciPy版本出了问题。
使用MKL时:
2.7.6 |Anaconda 1.9.1 (64-bit)| (default, Jan 17 2014, 10:13:17)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-54)]
('numpy:', '1.8.1')
('scipy:', '0.13.3')
umfpack_info:
NOT AVAILABLE
lapack_opt_info:
libraries = ['mkl_lapack95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
blas_opt_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
openblas_info:
NOT AVAILABLE
lapack_mkl_info:
libraries = ['mkl_lapack95_lp64', 'mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
blas_mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
define_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/home/jpsilva/anaconda/lib']
efine_macros = [('SCIPY_MKL_H', None)]
include_dirs = ['/home/jpsilva/anaconda/include']
False
False
False
False
False
False
False
False
不使用MKL时:
2.7.5+ (default, Feb 27 2014, 19:37:08)
[GCC 4.8.1]
('numpy:', '1.8.1')
('scipy:', '0.13.3')
umfpack_info:
NOT AVAILABLE
atlas_threads_info:
NOT AVAILABLE
blas_opt_info:
libraries = ['f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = c
include_dirs = ['/usr/include/atlas']
atlas_blas_threads_info:
NOT AVAILABLE
openblas_info:
NOT AVAILABLE
lapack_opt_info:
libraries = ['lapack', 'f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base/atlas', '/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = f77
include_dirs = ['/usr/include/atlas']
atlas_info:
libraries = ['lapack', 'f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base/atlas', '/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = f77
include_dirs = ['/usr/include/atlas']
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
atlas_blas_info:
libraries = ['f77blas', 'cblas', 'atlas']
library_dirs = ['/usr/lib/atlas-base']
define_macros = [('ATLAS_INFO', '"\\"3.10.1\\""')]
language = c
include_dirs = ['/usr/include/atlas']
mkl_info:
NOT AVAILABLE
True
False
True
False
True
False
True
False
2 个回答
3
sp.sparse.linalg.eigs()
这个函数返回的特征值不一定是有序的,也就是说,得到的特征值可能是乱七八糟的顺序。你可能需要在调用 np.allclose
之前先对特征值进行排序。
另外,可以尝试给 np.allclose
设置不同的容忍度,比如:
np.allclose( eigs(A, 90)[0]), eigs(A,90)[0], 1e-3, 1e-5 )
希望这些信息对你有帮助。
编辑
我稍微修改了一下在 Python 3(不是 IPython)上的脚本,sort
是很重要的。
#!/usr/bin/python3
import sys
from scipy.sparse.linalg import eigs
from scipy.sparse import spdiags
import numpy as np
import scipy as sp
n1 = 100
x, dx = np.linspace(0, 2, n1, retstep=True)
e1 = np.ones(n1)
A = 1./(dx**2)*spdiags([e1, -2*e1, e1], [-1,0,1], n1, n1)
print( sys.version )
print( 'numpy:', np.version.version )
print( 'scipy:', sp.version.version )
for i in range(4):
print (np.allclose(np.sort(eigs(A, 90)[0]), np.sort(eigs(A, 90)[0])))
print (np.allclose(eigs(A, 90)[0], eigs(A, 90)[0]))
输出:
3.4.0 (default, Mar 22 2014, 22:51:25)
[GCC 4.8.2]
numpy: 1.9.0.dev-b80ef75
scipy: 0.15.0.dev-c2b7308
True
False
True
False
True
False
True
False
如果 sort
在你的系统中不起作用,可能是因为版本不同或者有bug。
4
通过 eigs
得到的特征值是随机顺序的。如果你把它们排序,你会发现每次得到的特征值都是一样的(当然,如果起始向量运气不好,可能会有例外)。
ARPACK 默认使用一个随机的起始向量来进行 Krylov 过程,这就是为什么每次调用时结果会不同的原因。如果你需要“可重复”的结果,可以指定 v0
参数。
需要注意的是,“可重复”这个词是加了引号的,因为由于编译器的优化和浮点数的舍入误差,结果并不总是能完全重复。