__init__() 收到意外的关键字参数 'stop_words
我在用scikit-learn 0.14.1版本计算tf-idf的时候,写了下面这段代码:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from nltk.corpus import stopwords
import numpy as np
import numpy.linalg as LA
train_set = ["The sky is blue.", "The sun is bright."] #Documents
test_set = ["The sun in the sky is bright sun."] #Query
stopWords = stopwords.words('english')
vectorizer = CountVectorizer(stop_words = stopWords)
#print vectorizer
transformer = TfidfTransformer()
#print transformer
trainVectorizerArray = vectorizer.fit_transform(train_set).toarray()
testVectorizerArray = vectorizer.transform(test_set).toarray()
print 'Fit Vectorizer to train set', trainVectorizerArray
print 'Transform Vectorizer to test set', testVectorizerArray
transformer.fit(trainVectorizerArray)
print
print transformer.transform(trainVectorizerArray).toarray()
transformer.fit(testVectorizerArray)
print
tfidf = transformer.transform(testVectorizerArray)
print tfidf.todense()
结果出现了这个错误:
Traceback (most recent call last):
File "tfidf.py", line 12, in <module>
vectorizer = CountVectorizer(stop_words = stopWords)
TypeError: __init__() got an unexpected keyword argument 'stop_words'
我不太明白'止词(stop_words)'出了什么问题,能帮帮我吗?
1 个回答
3
所以这个错误是我自己的问题,我跟着一个网上的教程安装了sklearn,结果安装到了0.10版本。根据错误信息来看,我觉得在0.10版本中不支持stop_words这个功能。后来我把它更新到了0.14.1版本,现在一切都正常了!!